Navigation Links
Maize cell wall genes identified, giving boost to biofuel research

WEST LAFAYETTE, Ind. - Purdue University scientists have helped identify and group the genes thought to be responsible for cell wall development in maize, an effort that expands their ability to discover ways to produce the biomass best suited for biofuels production.

The Purdue scientists, led by Nicholas Carpita, a professor of plant cell biology, published their findings on the 750 cell wall genes in the journal Plant Physiology on Thursday (Nov. 19). They also were co-authors on a study, published Thursday (Nov. 19) in Science, that for the first time sequenced the genome of maize.

In discovering the some 32,000 genes of maize, scientists can better study the function of individual genes and how each affects all aspects of the plant's development. Purdue's scientists are particularly interested in the genes that regulate cellulose, lignin and other parts of plant's cell walls.

"This gives us an inventory of the genes that could become possible targets for modification in the production of biomass," Carpita said. "We want to be able to control the structure of the cell walls."

Carpita and Maureen McCann, a professor of biology and a co-author on both papers, are part of Purdue's C3Bio research project, which is aimed at using thermal and chemical catalysts to create biofuels that utilize more of a plant's carbon. The team hopes to engineer catalysts or catalytic sites into plants and use heat or chemical catalysts to directly convert the biomass into fuel.

"The grasses, including maize, make a unique kind of cell wall," Carpita said. "Beyond the cell wall genes, having a complete genome will enable us to identify developmental controls, such as genes that delay flowering to continue production of biomass, or alter pathways so that plants accumulate more sugar in the stem."

The annotation of the maize cell wall genes also led to the discovery of more than 80 mutants involved in cell wall production. Scientists can grow plants that have a gene mutation and compare them to those without the mutation to understand how changes in the gene functions in biomass accumulation or quality in maize.

"Discovering the genome sequence of maize is a huge step forward in getting at the functions of genes that will be useful in developing new bioenergy crops," McCann said. "We will be able to identify mutants in key genes of interest and then assess how mutation changes the plant cell wall and if those changes are useful."

Researchers found that maize's cell wall genes were more similar to those of rice than to Arabidopsis, a plant often used as a model in scientific experiments.

"Now we're starting to see differences in the families of related genes and how those genes are expressed," said Bryan Penning, McCann's lab manager and a co-author on both papers. "Now that we have the sequence, we can start building a reservoir of data on the expression patterns of the cell wall genes."

The next step in using the data collected will include testing the mutant genes and exploring how expression of particular genes can be regulated to produce desired characteristics in a maize plant.


Contact: Brian Wallheimer
Purdue University

Related biology news :

1. New map of variation in maize genetics holds promise for developing new varieties
2. The amazing maze of maize evolution
3. Researchers find the earliest evidence of domesticated maize
4. Early origins of maize in Mexico
5. Ancient Mexican maize varieties
6. Team finds an economical way to boost the vitamin A content of maize
7. If corn is biofuels king, tropical maize may be emperor
8. Simulating kernel production influences maize model accuracy
9. Transgenic maize is more susceptible to aphids
10. First all-African GM crop is resistant to maize streak virus
11. Largest gene study of childhood IBD identifies 5 new genes
Post Your Comments:
(Date:11/18/2015)... -- As new scientific discoveries deepen our understanding of how ... face challenges in better using that knowledge to guide ... more children continue to survive pediatric cancer, that counseling ... John M. Maris, M.D ., a pediatric ... . --> John M. Maris, M.D ...
(Date:11/17/2015)... Calif. , Nov. 17, 2015  Vigilant Solutions ... has joined its Board of Directors. ... Board after recently retiring from the partnership at TPG ... 107 companies with over $140 Billion in revenue.  He ... improvement across all the TPG companies, from 1997 to ...
(Date:11/12/2015)... 12, 2015  Arxspan has entered into an ... Harvard for use of its ArxLab cloud-based suite ... The partnership will support the institute,s efforts to ... research information internally and with external collaborators. The ... managing the Institute,s electronic laboratory notebook, compound and ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... 24, 2015  Twist Bioscience, a company focused ... Ph.D., Twist Bioscience chief executive officer, will present ... December 1, 2015 at 3:10 p.m. Eastern Time at The ... --> --> ... Bioscience is on Twitter. Sign up to follow ...
(Date:11/24/2015)... , Nov. 24, 2015 Capricor Therapeutics, ... focused on the discovery, development and commercialization of first-in-class ... Chief Executive Officer, is scheduled to present at the ... at 10:50 a.m. EST, at The Lotte New York ... . . --> ...
(Date:11/24/2015)... , Nov. 24, 2015 According to two new ... 2005. This is something that many doctors, scientists, and public ... questions remains: with fewer PSA tests being done, will there ... Dr. David Samadi, "Despite the efforts made ... remains the second leading cancer cause of death in men, ...
(Date:11/23/2015)... ... 23, 2015 , ... Noblis, Inc., a leading provider of science, technology, and ... Geospatial Intelligence Agency (NGA), has joined the Noblis NSP team as President of the ... intelligence community and the private sector,” said L. Roger Mason, Jr., Ph.D. , ...
Breaking Biology Technology: