Navigation Links
MIT creates tiny backpacks for cells

CAMBRIDGE, Mass. -- MIT engineers have outfitted cells with tiny "backpacks" that could allow them to deliver chemotherapy agents, diagnose tumors or become building blocks for tissue engineering.

Michael Rubner, director of MIT's Center for Materials Science and Engineering and senior author of a paper on the work that appeared online in Nano Letters on Nov. 5, said he believes this is the first time anyone has attached such a synthetic patch to a cell.

The polymer backpacks allow researchers to use cells to ferry tiny cargoes and manipulate their movements using magnetic fields. Since each patch covers only a small portion of the cell surface, it does not interfere with the cell's normal functions or prevent it from interacting with the external environment.

"The goal is to perturb the cell as little as possible," said Robert Cohen, the St. Laurent Professor of Chemical Engineering at MIT and an author of the paper.

The researchers worked with B and T cells, two types of immune cells that can home to various tissues in the body, including tumors, infection sites, and lymphoid tissues a trait that could be exploited to achieve targeted drug or vaccine delivery.

"The idea is that we use cells as vectors to carry materials to tumors, infection sites or other tissue sites," said Darrell Irvine, an author of the paper and associate professor of materials science and engineering and biological engineering.

Cellular backpacks carrying chemotherapy agents could target tumor cells, while cells equipped with patches carrying imaging agents could help identify tumors by binding to protein markers expressed by cancer cells.

Another possible application is in tissue engineering. Patches could be designed that allow researchers to align cells in a certain pattern, eliminating the need for a tissue scaffold.

The polymer patch system consists of three layers, each with a different function, stacked onto a surface. The bottom layer tethers the polymer to the surface, the middle layer contains the payload, and the top layer serves as a "hook" that catches and binds cells.

Once the layers are set up, cells enter the system and flow across the surface, getting stuck on the polymer hooks. The patch is then detached from the surface by simply lowering the temperature, and the cells float away, with backpacks attached.

"The rest of the cell is untouched and able to interact with the environment," said Albert Swiston, lead author of the paper and a graduate student in materials science and engineering.

The researchers found that T cells with backpacks were able to perform their normal functions, including migrating across a surface, just as they would without anything attached.

By loading the backpacks with magnetic nanoparticles, the researchers can control the cells' movement with a magnetic field.

Because the polymer synthesis and assembly takes place before the patches are attached to cells, there is plenty of opportunity to tweak the process to improve the polymers' effectiveness and ensure they won't be toxic to cells, the researchers say.


Contact: Teresa Herbert
Massachusetts Institute of Technology

Related biology news :

1. Early-stage gene transcription creates access to DNA
2. MIT creates new material for fuel cells
3. Novel living system recreates predator-prey interaction
4. Using evolution, UW team creates a template for many new therapeutic agents
5. Auto immune response creates barrier to fertility; could be a step in speciation
6. MIT creates 3-D images of living cell
7. Accelerometer backpacks aid study of gliding behavior in the flying lemur
8. Scripps research scientists identify compounds for stem-cell production from adult cells
9. Lung airway cells activate vitamin D and increase immune response
10. New method provides panoramic view of protein-RNA interactions in living cells
11. Simple chemical procedure augments therapeutic potential of stem cells
Post Your Comments:
(Date:11/9/2015)... 2015 ... "Global Law Enforcement Biometrics Market 2015-2019" ... ) has announced the addition ... Market 2015-2019" report to their offering. ... ) has announced the addition of ...
(Date:11/2/2015)... Calif. , Nov. 2, 2015  SRI International ... million to provide preclinical development services to the National ... contract, SRI will provide scientific expertise, modern testing and ... variety of preclinical pharmacology and toxicology studies to evaluate ... --> The PREVENT Cancer Drug Development Program ...
(Date:10/29/2015)... 2015 Daon, a global leader in mobile ... a new version of its IdentityX Platform , ... America have already installed IdentityX v4.0 and ... FIDO UAF certified server component as an ... FIDO features. These customers include some of the largest ...
Breaking Biology News(10 mins):
(Date:11/25/2015)... , November 25, 2015 ... Report is a professional and in-depth study on ...      (Logo: ) , ... the industry including definitions, classifications, applications and industry ... for the international markets including development trends, competitive ...
(Date:11/24/2015)... , Nov. 24, 2015 Halozyme Therapeutics, Inc. (NASDAQ: ... in New York on Wednesday, December 2 ... Torley , president and CEO, will provide a corporate overview. ... York at 1:00 p.m. ET/10:00 a.m. PT . ... relations, will provide a corporate overview. --> th ...
(Date:11/24/2015)... -- Clintrax Global, Inc., a worldwide provider of clinical research services headquartered ... the company has set a new quarterly earnings record in Q3 ... posted for Q3 of 2014 to Q3 of 2015.   ... , with the establishment of an Asia-Pacific ... United Kingdom and Mexico , with ...
(Date:11/24/2015)... 2015 --> ... released by Transparency Market Research, the global non-invasive prenatal ... of 17.5% during the period between 2014 and 2022. ... Industry Analysis, Size, Volume, Share, Growth, Trends and Forecast ... market to reach a valuation of US$2.38 bn by ...
Breaking Biology Technology: