Navigation Links
MGH researchers describe new way to identify, evolve novel enzymes

The intricate interplay of proteins and other chemicals that underlies most biological activities requires the participation of enzymes, specialized molecules that accelerate chemical reactions between molecules. The creation of totally new enzymes can help improve the synthesis of chemicals and pharmaceuticals, devise new tools for molecular biology research, and develop new therapies. In the August 16 issue of Nature, two Massachusetts General Hospital (MGH) researchers describe a way of creating novel enzymes that, for the first time, does not require prior understanding of exactly how the enzymes work.

To date, the only source of enzymes has been biology, says Jack Szostak, PhD, of the MGH Department of Molecular Biology, the reports senior author. Great efforts are going into modifying and improving these natural enzymes, and our work demonstrates the potential of evolving completely new enzymes in the laboratory.

Szostak and his co-author Burckhard Seelig, PhD, used a technique called mRNA display previously developed in Szostaks lab that allows the identification and amplification of proteins that fit particular criteria. In order to create an enzyme that would stimulate or catalyze the joining of two segments of RNA in a way that does not occur naturally, they began by generating a library of 4 trillion small proteins with slight variations in their sequences. Each protein was then brought together with the RNA segments to be joined, called substrates.

If a particular protein induced the RNA substrates to join, resulting in a significantly larger molecule, that signified the protein was an active enzyme. The investigators could select out the larger RNA strands, generate more of the enzymes, and repeat the experiment. The induction of random mutations to produce different forms of the enzymes and reducing the time allowed for the splicing reaction enabled the development of more efficient versions by means of guided evolution.

Szostak notes that the final version of the enzyme they created is quite small and still not very stable, but it is a starting point to discovering additional strategies that may help improve its activity. The same mRNA-display technique can also identify enzymes that break down or otherwise modify their substrate molecules.

We hope our work on optimizing this enzyme will demonstrate that we can evolve catalysts with activity as good as that of naturally occurring enzymes, Szostak explains. Wed also like to determine the 3D structure of our new enzyme to understand how it binds to its relatively larger substrates and catalyzes the joining of the two RNA strands. The Alex Rich Distinguished Investigator in Molecular Biology at MGH, Szostak also is a professor of Genetics at Harvard Medical School, a Howard Hughes Medical Institute investigator and a member of the MGH Center for Computational and Integrative Biology. This study was supported by a grant from the NASA Astrobiology Institute, and Seeligs was supported in part by the Emmy Noether-Programm of the Deutsche Forschungsgemeinschaft.


Contact: Sue McGreevey
Massachusetts General Hospital

Related biology news :

1. Researchers discover way to make cells in the eye sensitive to light
2. Researchers find how protein allows insects to detect and respond to pheromones
3. Researchers Uncover Key Step In Manufacture of Memory Protein
4. NYU researchers simulate molecular biological clock
5. Researchers reveal the infectious impact of salmon farms on wild salmon
6. Researchers identify target for cancer drugs
7. Vital step in cellular migration described by UCSD medical researchers
8. ASU researchers finds novel chemistry at work to provide parrots vibrant red colors
9. UCSD researchers maintain stem cells without contaminated animal feeder layers
10. Researchers discover molecule that causes secondary stroke
11. Researchers find missing genes of ancient organism
Post Your Comments:
(Date:4/15/2016)... Research and Markets has announced ... 2016-2020,"  report to their offering.  , ... global gait biometrics market is expected to grow ... 2016-2020. Gait analysis generates multiple variables ... to compute factors that are not or cannot ...
(Date:3/31/2016)... , March 31, 2016  Genomics firm Nabsys ... founding CEO, Barrett Bready , M.D., who returned ... of the original technical leadership team, including Chief Technology ... of Product Development, Steve Nurnberg and Vice President of ... to the company. Dr. Bready served as ...
(Date:3/22/2016)... , PROVO and ... -- Newborn Screening Ontario (NSO), which operates the highest ... for molecular testing, and Tute Genomics and UNIConnect, leaders ... technology respectively, today announced the launch of a project ... sequencing (NGS) testing panel. NSO has ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... -- Houston Methodist Willowbrook Hospital has signed a ... serve as their official health care provider. As ... provide sponsorship support, athletic training services, and most ... athletes and families. "We are excited ... to bring Houston Methodist quality services and programs ...
(Date:6/23/2016)... Calif. , June 23, 2016  The Prostate Cancer Foundation ... increasingly precise treatments and faster cures for prostate cancer. Members of the Class ... across 15 countries. Read More About the Class of ... ... ...
(Date:6/23/2016)... SAN FRANCISCO , June 23, 2016   ... it has secured $1 million in debt financing from ... to ramp up automation and to advance its drug ... for its new facility. "SVB has been ... goes beyond the services a traditional bank would provide," ...
(Date:6/23/2016)... ... 2016 , ... STACS DNA Inc., the sample tracking software company, today announced ... has joined STACS DNA as a Field Application Specialist. , “I am thrilled ... COO of STACS DNA. “In further expanding our capacity as a scientific integrator, Hays ...
Breaking Biology Technology: