Navigation Links
Listening to cells: Scientists probe human cells with high-frequency sound
Date:2/1/2013

Philadelphia, Pa. Sound waves are widely used in medical imaging, such as when doctors take an ultrasound of a developing fetus. Now scientists have developed a way to use sound to probe tissue on a much tinier scale. Researchers from the University of Bordeaux in France deployed high-frequency sound waves to test the stiffness and viscosity of the nuclei of individual human cells. The scientists predict that the probe could eventually help answer questions such as how cells adhere to medical implants and why healthy cells turn cancerous.

"We have developed a new non-contact, non-invasive tool to measure the mechanical properties of cells at the sub-cell scale," says Bertrand Audoin, a professor in the mechanics laboratory at the University of Bordeaux. "This can be useful to follow cell activity or identify cell disease." The work will be presented at the 57th Annual Meeting of the Biophysical Society (BPS), held Feb. 2-6, 2013, in Philadelphia, Pa.

The technique that the research team used, called picosecond ultrasonics, was initially applied in the electronics industry in the mid-1980s as a way to measure the thickness of semiconductor chip layers. Audoin and his colleagues, in collaboration with a research group in biomaterials led by Marie-Christine Durrieu from the Institute of Chemistry & Biology of Membranes & Nano-objects at Bordeaux University, adapted picosecond ultrasonics to study living cells. They grew cells on a metal plate and then flashed the cell-metal interface with an ultra-short laser pulse to generate high-frequency sound waves. Another laser measured how the sound pulse propagated through the cells, giving the scientists clues about the mechanical properties of the individual cell components.

"The higher the frequency of sound you create, the smaller the wavelength, which means the smaller the objects you can probe" says Audoin. "We use gigahertz waves, so we can probe objects on the order of a hundred nanometers." For comparison, a cell's nucleus is about 10,000 nanometers wide.

The team faced challenges in applying picosecond ultrasonics to study biological systems. One challenge was the fluid-like material properties of the cell. "The light scattering process we use to detect the mechanical properties of the cell is much weaker than for solids," says Audoin. "We had to improve the signal to noise ratio without using a high-powered laser that would damage the cell." The team also faced the challenge of natural cell variation. "If you probe silicon, you do it once and it's finished," says Audoin. "If you probe the nucleus you have to do it hundreds of times and look at the statistics."

The team developed methods to overcome these challenges by testing their techniques on polymer capsules and plant cells before moving on to human cells. In the coming years the team envisions studying cancer cells with sound. "A cancerous tissue is stiffer than a healthy tissue," notes Audoin. "If you can measure the rigidity of the cells while you provide different drugs, you can test if you are able to stop the cancer at the cell scale."


'/>"/>

Contact: Ellen R. Weiss
eweiss@biophysics.org
240-290-5606
American Institute of Physics
Source:Eurekalert

Related biology news :

1. From the Amazon rainforest to human body cells: Quantifying stability
2. Programming cells: The importance of the envelope
3. Stanford scientists develop gene therapy approach to grow blood vessels in ischemic limbs
4. Queens scientists seek vaccine for Pseudomonas infection
5. Scientists produce eye structures from human blood-derived stem cells
6. American Society of Plant Biologists honors early career women scientists
7. Brandeis scientists win prestigious prize for circadian rhythms research
8. Scientists discover new method of proton transfer
9. Salk scientists open new window into how cancers override cellular growth controls
10. WileyChina.com - Now Featuring Bespoke Pages for China’s Life Scientists
11. Scientists win $2 million to study new pathway in development and maintenance of lymphoma
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/18/2017)... 18, 2017  Socionext Inc., a global expert in SoC-based imaging ... server, the M820, which features the company,s hybrid codec technology. A ... Tera Probe, Inc., will be showcased during the upcoming Medtec Japan ... at the Las Vegas Convention Center April ... Click here for ...
(Date:4/13/2017)... India , April 13, 2017 According to ... Proofing, Identity Authentication, Identity Analytics, Identity Administration, and Authorization), Service, Authentication Type, ... MarketsandMarkets™, the IAM Market is expected to grow from USD 14.30 Billion ... Growth Rate (CAGR) of 17.3%. ... MarketsandMarkets ...
(Date:4/11/2017)... N.Y. , April 11, 2017 ... fingerprints, but researchers at the New York University ... College of Engineering have found that partial similarities ... security systems used in mobile phones and other ... thought. The vulnerability lies in the ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... ROTTERDAM, the Netherlands and LAGUNA HILLS, ... that The Institute of Cancer Research, London ... will use MMprofiler™ with SKY92, SkylineDx,s prognostic tool to risk-stratify ... high-risk trial known as MUK nine . The University ... this trial, which is partly funded by Myeloma UK, and ...
(Date:10/11/2017)... ... October 11, 2017 , ... A new ... rates in frozen and fresh in vitro fertilization (IVF) transfer cycles. ... to IVF success. , After comparing the results from the fresh and frozen ...
(Date:10/10/2017)... , ... October 10, 2017 , ... San Diego-based team ... its corporate rebranding initiative announced today. The bold new look is part of ... the company moves into a significant growth period. , It will also expand its ...
(Date:10/10/2017)... ... October 10, 2017 , ... For the ... won a US2020 STEM Mentoring Award. Representatives of the FirstHand program travelled to ... Experience from US2020. , US2020’s mission is to change the trajectory of STEM ...
Breaking Biology Technology: