Navigation Links
Influenza study: Meet virus' new enemy
Date:2/21/2013

Simon Fraser University virologist Masahiro Niikura and his doctoral student Nicole Bance are among an international group of scientists that has discovered a new class of molecular compounds capable of killing the influenza virus.

Working on the premise that too much of a good thing can be a killer, the scientists have advanced previous researchers' methods of manipulating an enzyme that is key to how influenza replicates and spreads.

Their new compounds will lead to a new generation of anti-influenza drugs that the virus' strains can't adapt to, and resist, as easily as they do Tamiful. It's an anti-influenza drug that is becoming less effective against the constantly mutating flu virus.

These increasingly less adequate anti-influenza drugs are currently doctors' best weapons against influenza. They helped the world beat H1N1, swine flu, into submission four years ago.

The journal Science Express has just published online the scientists' study, revealing how to use their newly discovered compounds to interrupt the enzyme neuraminidase's facilitation of influenza's spread.

Tamiful and another anti-influenza drug, Relenza, focus on interrupting neuraminidase's ability to help influenza detach from an infected cell's surface by digesting sialic acid, a sugar on the surface of the cell. The flu virus uses the same sugar to stick to the cell while invading it. Once attached, influenza can invade the cell and replicate. v

This is where the newly discovered compounds come to the still-healthy cells' rescue. They clog up neuraminidase, stopping the enzyme from dissolving the sialic acid, which prevents the virus from escaping the infected cell and spreading.

The new compounds are also more effective because they're water-soluble. "They reach the patient's throat where the flu virus is replicating after being taken orally," says Niikura, a Faculty of Health Sciences associate professor.

"Influenza develops resistance to Replenza less frequently, but it's not the drug of choice like Tamiful because it's not water-soluble and has to be taken as a nasal spray.

"Our new compounds are structurally more similar to sialic acid than Tamiful. We expect this closer match will make it much more difficult for influenza to adapt to new drugs."

Ultimately, the new compounds will buy scientists more time to develop new vaccines for emerging strains of influenza that are resistant to existing vaccines.


'/>"/>

Contact: Carol Thorbes
cthorbes@sfu.ca
Simon Fraser University
Source:Eurekalert

Related biology news :

1. Target for potent first-strike influenza drugs identified
2. Climate change could increase levels of avian influenza in wild birds
3. Harnessing anticancer drugs for the future fight against influenza
4. Influenza research: Can dynamic mapping reveal clues about seasonality?
5. Pandemic controversies: The global response to pandemic influenza must change
6. BYU study: Using a gun in bear encounters doesnt make you safer
7. 15-year study: When it comes to creating wetlands, Mother Nature is in charge
8. Study: Exercise can lead to female orgasm, sexual pleasure
9. U of I study: Lose body weight before gaining baby weight
10. Study: Men who do load-bearing exercise in early 20s may be shielded from osteoporosis
11. USF study: Common fungicide wreaks havoc on freshwater ecosystems
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/5/2017)... , April 5, 2017  The Allen Institute for ... Cell Explorer: a one-of-a-kind portal and dynamic digital window ... imaging data, the first application of deep learning to ... stem cell lines and a growing suite of powerful ... for these and future publicly available resources created and ...
(Date:4/4/2017)... NEW YORK , April 4, 2017   ... solutions, today announced that the United States Patent and ... The patent broadly covers the linking of an iris ... the same transaction) and represents the company,s 45 th ... our latest patent is very timely given the multi-modal ...
(Date:3/30/2017)... The research team of The Hong Kong Polytechnic University (PolyU) ... ground breaking 3D fingerprint minutiae recovery and matching technology, pushing contactless ... use in identification, crime investigation, immigration control, security of access and ... ... A research team led by Dr Ajay Kumar ...
Breaking Biology News(10 mins):
(Date:9/20/2017)... Palo Alto, CA (PRWEB) , ... September 20, ... ... and public interest organization focused on molecular manufacturing and other transformative technologies, announced ... categories, one for Experiment and the other for Theory in nanotechnology/molecular manufacturing. , ...
(Date:9/19/2017)... Philadelphia, PA (PRWEB) , ... September 19, 2017 ... ... are joining Philadelphia’s largest group of funded early-stage tech companies. “Grit” author Angela ... anchor tenant. Also joining the ic@3401 community is Cooley, an international law firm ...
(Date:9/19/2017)... -- ValGenesis Inc., the global leader in Enterprise Validation ... strategic partnership with VTI Life Sciences (VTI). This partnership ... the latest technology available in the ValGenesis VLMS system. ... and cost-effective validation services using ValGenesis VLMS. VTI will ... system. The partnership ...
(Date:9/19/2017)... ... September 19, 2017 , ... ... surgical applications, announced today that two new patents have been allowed by the ... Co-Founder of Band-LOK, said, “We continue to explore additional clinically-relevant designs for both ...
Breaking Biology Technology: