Navigation Links
If junk DNA is useful, why is it not shared more equally?

The presence of introns in genes requires cells to process "messenger RNA" molecules before synthesizing proteins, a process that is costly and often error-prone. It was long believed that this was simply part of the price organisms paid for the flexibility to create new types of protein but recent work has made it clear that introns themselves have a number of important functions. And so attention is gradually shifting to asking why some organisms have so few introns and others so many.

It seems likely that new introns are added to DNA when double-stranded DNA breaks which may arise from a variety of mechanisms are not repaired "correctly" but the newly created ends are instead joined to other fragments of DNA. Farlow and colleagues at the Institute of Population Genetics of the University of Veterinary Medicine, Vienna reasoned that introns may be lost by a similar mechanism. An examination of areas of DNA where introns are known to have been lost in organisms such as worms and flies provides support for their idea.

DNA breaks may be treated in one of two ways: correct repair (by a relatively time-consuming process known as "homologous recombination") or the rapid and error-prone joining of non-homologous ends. The two pathways are essentially separate and can compete with each other for DNA breaks to work with. The scientists at the University of Veterinary Medicine, Vienna now suggest that species-specific differences in the relative activity of these two pathways might underlie the observed variation in intron number.

The theory represents a fundamental change in the way we think about the evolution of DNA. Evolution has seen periods of large scale intron loss alternating with periods of intron gain and this has been interpreted as the result of changing selection pressure. However, the rates at which single species have gained and lost introns throughout evolution have been found to vary in parallel, consistent with Farlow's notion that the two processes are related. The new theory provides an alternative interpretation: changes in the activities of the "homologous" and "non-homologous" pathways for repairing DNA breaks could cause introns to be lost faster than they are gained, or vice versa.

The idea is consistent with what we currently know about intron numbers, which range from a handful in some simple eukaryotes to more than 180,000 in the human genome. And as Farlow says, "Linking intron gain and loss to the repair of DNA breaks offers a neat explanation for how intron number can change over time. This theory may account for the huge diversity we seen in intron number between different species."


Contact: Dr. Ashley Farlow
University of Veterinary Medicine -- Vienna

Related biology news :

1. Shared survival mechanism explains why good nerve cells last and bad cancer cells flourish
2. Periodontitis and myocardial infarction: A shared genetic predisposition
3. Bolivian rainforest study suggests feeding behavior in monkeys and humans have ancient, shared roots
4. Freshwater sustainability challenges shared by Southwest and Southeast, researchers find
5. Hard-to-find fish reveals shared developmental toolbox of evolution
Post Your Comments:
(Date:11/4/2015)... , November 4, 2015 ... new market report published by Transparency Market Research "Home Security ... Trends and Forecast 2015 - 2022", the global home security ... 30.3 bn by 2022. The market is estimated to ... period from 2015 to 2022. Rising security needs among ...
(Date:10/29/2015)... --  MedNet Solutions , an innovative SaaS-based eClinical technology ... is pleased to announce that it has been selected ... of only three finalists for a 2015 Tekne ... category. The Tekne Awards honor Minnesota ... and leadership. iMedNet™ eClinical  technology ...
(Date:10/29/2015)... , Oct. 29, 2015 Daon, a ... that it has released a new version of its ... in North America have already ... v4.0 also includes a FIDO UAF certified server ... already preparing to activate FIDO features. These customers include ...
Breaking Biology News(10 mins):
(Date:11/25/2015)... 2 nouvelles études permettent d , ... les souches bactériennes retrouvées dans la plaque dentaire ... . Ces recherches  ouvrent une nouvelle voie ... de l,un des problèmes de santé les plus ... --> 2 nouvelles études permettent d , ...
(Date:11/25/2015)... Nov. 25, 2015 /PRNewswire/ - Aeterna Zentaris Inc. (NASDAQ: ... business and prospects remain fundamentally strong and highlights ... doxorubicin) recently received DSMB recommendation to continue the ... review of the final interim efficacy and safety ... Endpoint in men with heavily pretreated castration- and ...
(Date:11/25/2015)... ... November 25, 2015 , ... Jessica Richman and Zachary Apte, ... their initial angel funding process. Now, they are paying it forward to other ... stage investments in the microbiome space. In this, they join other successful ...
(Date:11/24/2015)... , Nov. 24, 2015 Halozyme Therapeutics, Inc. (NASDAQ: ... in New York on Wednesday, December 2 ... Torley , president and CEO, will provide a corporate overview. ... York at 1:00 p.m. ET/10:00 a.m. PT . ... relations, will provide a corporate overview. --> th ...
Breaking Biology Technology: