Navigation Links
Human stem cells converted to functional lung cells

NEW YORK, NY For the first time, scientists have succeeded in transforming human stem cells into functional lung and airway cells. The advance, reported by Columbia University Medical Center (CUMC) researchers, has significant potential for modeling lung disease, screening drugs, studying human lung development, and, ultimately, generating lung tissue for transplantation. The study was published today in the journal Nature Biotechnology.

"Researchers have had relative success in turning human stem cells into heart cells, pancreatic beta cells, intestinal cells, liver cells, and nerve cells, raising all sorts of possibilities for regenerative medicine," said study leader Hans-Willem Snoeck, MD, PhD, professor of medicine (in microbiology & immunology) and affiliated with the Columbia Center for Translational Immunology and the Columbia Stem Cell Initiative. "Now, we are finally able to make lung and airway cells. This is important because lung transplants have a particularly poor prognosis. Although any clinical application is still many years away, we can begin thinking about making autologous lung transplantsthat is, transplants that use a patient's own skin cells to generate functional lung tissue."

The research builds on Dr. Snoeck's 2011 discovery of a set of chemical factors that can turn human embryonic stem (ES) cells or human induced pluripotent stem (iPS) cells into anterior foregut endodermprecursors of lung and airway cells. (Human iPS cells closely resemble human ES cells but are generated from skin cells, by coaxing them into taking a developmental step backwards. Human iPS cells can then be stimulated to differentiate into specialized cellsoffering researchers an alternative to human ES cells.)

In the current study, Dr. Snoeck and his colleagues found new factors that can complete the transformation of human ES or iPS cells into functional lung epithelial cells (cells that cover the lung surface). The resultant cells were found to express markers of at least six types of lung and airway epithelial cells, particularly markers of type 2 alveolar epithelial cells. Type 2 cells are important because they produce surfactant, a substance critical to maintain the lung alveoli, where gas exchange takes place; they also participate in repair of the lung after injury and damage.

The findings have implications for the study of a number of lung diseases, including idiopathic pulmonary fibrosis (IPF), in which type 2 alveolar epithelial cells are thought to play a central role. "No one knows what causes the disease, and there's no way to treat it," says Dr. Snoeck. "Using this technology, researchers will finally be able to create laboratory models of IPF, study the disease at the molecular level, and screen drugs for possible treatments or cures."

"In the longer term, we hope to use this technology to make an autologous lung graft," Dr. Snoeck said. "This would entail taking a lung from a donor; removing all the lung cells, leaving only the lung scaffold; and seeding the scaffold with new lung cells derived from the patient. In this way, rejection problems could be avoided." Dr. Snoeck is investigating this approach in collaboration with researchers in the Columbia University Department of Biomedical Engineering.

"I am excited about this collaboration with Hans Snoeck, integrating stem cell science with bioengineering in the search for new treatments for lung disease," said Gordana Vunjak-Novakovic, co-author of the paper and Mikati Foundation Professor of Biomedical Engineering at Columbia's Engineering School and professor of medical sciences at Columbia University College of Physicians and Surgeons.


Contact: Karin Eskenazi
Columbia University Medical Center

Related biology news :

1. Course in human mate selection wins Science magazine prize
2. Study finds the forgotten ape threatened by human activity and forest loss
3. Study examines potential evolutionary role of sexual regret in human survival and reproduction
4. Clemson research finds chickens offer clues to human birth defects
5. Researchers describe 1 mechanism that favors rejection in transplantation of porcine cartilage in humans
6. Aging impacts epigenome in human skeletal muscle
7. Salk scientists for the first time generate mini-kidney structures from human stem cells
8. Human error most common cause of birth asphyxia
9. Ancient, modern DNA tell story of first humans in the Americas
10. Human stem cells used to elucidate mechanisms of beta-cell failure in diabetes
11. Fast-mutating DNA sequences shape early development; guided evolution of uniquely human traits
Post Your Comments:
Related Image:
Human stem cells converted to functional lung cells
(Date:11/10/2015)... , Nov. 10, 2015  In this ... the basis of product, type, application, disease ... in this report are consumables, services, software. ... are safety biomarkers, efficacy biomarkers, and validation ... report are diagnostics development, drug discovery and ...
(Date:11/9/2015)... , Nov. 9, 2015  Synaptics Inc. (NASDAQ: ... today announced broader entry into the automotive market with ... match the pace of consumer electronics human interface innovation. ... are ideal for the automotive industry and will be ... Europe , Japan ...
(Date:10/29/2015)... MINNETONKA, Minn. , Oct. 29, 2015   ... that supports the entire spectrum of clinical research, is ... the Minnesota High Tech Association (MHTA) as one of ... in the "Software – Small and Growing" category. The ... and individuals who have shown superior technology innovation and ...
Breaking Biology News(10 mins):
(Date:11/26/2015)... 26, 2015 ... Accutest Research Laboratories, a leading independent ... (CRO), has formed a strategic partnership ... Temple Health for joint work on ... ) , --> ...
(Date:11/25/2015)... , Nov. 25, 2015  PharmAthene, Inc. (NYSE ... has adopted a stockholder rights plan (Rights Plan) in ... operating loss carryforwards (NOLs) under Section 382 of the ... --> PharmAthene,s use of its NOLs could ... change" as defined in Section 382 of the Code. ...
(Date:11/25/2015)... Mass. , Nov. 25, 2015 Harvard ... biotechnology company developing bioengineered organ implants for life-threatening conditions, ... present at the LD Micro "Main Event" investor conference ... The presentation will be webcast live and posted for ... be available at the conference for one-on-one meetings on ...
(Date:11/25/2015)... ... November 25, 2015 , ... A long-standing partnership between the ... has been formalized with the signing of a Memorandum of Understanding. , AMA ... Capt. Karl Minter and Capt. Albert Glenn Tuesday, November 24, 2015, at AMA ...
Breaking Biology Technology: