Navigation Links
Hopkins researchers use light to move molecules

Using a light-triggered chemical tool, Johns Hopkins scientists report that they have refined a means of moving individual molecules around inside living cells and sending them to exact locations at precise times.

This new tool, they say, gives scientists greater command than ever in manipulating single molecules, allowing them to see how molecules in certain cell locations can influence cell behavior and to determine whether cells will grow, die, move or divide. A report on the work was published online December 13 in the Journal of the American Chemical Society.

Studying how just one signaling molecule communicates in various parts of a living cell has posed a challenge for scientists investigating how different interactions influence cell behavior, such as the decision to move, change shape or divide.

"By using one magical chemical set off by light, we modified our previous technique for moving molecules around and gained much more control," says Takanari Inoue, Ph.D., assistant professor of cell biology and member of the Center for Cell Dynamics in the Institute for Basic Biomedical Sciences. "The advantage of using light is that it is very controllable, and by confining the light, we can manipulate communication of molecules in only a tiny region of the cell," he says.

Specifically, the Hopkins team designed a way to initiate and spatially restrict the molecular interactions to a small portion of the cell by attaching a light-triggered chemical to a bulky molecule, the bond between which would break when researchers shined a defined beam of ultraviolet light on it. This enabled the chemical to enter the cell and force two different and specific proteins in that cell to mingle when they otherwise wouldn't. Normally, these proteins would have nothing to do with each other without the presence of the light-triggered chemical, but researchers decided to take advantage of this mingling to explore how certain proteins in a cell behave when transported to precise locations.

Next, researchers modified the two mingling proteins by attaching special molecules to them one sent one of the proteins to the edge of the cell and another caused ripples to form on the edge of the cell so that if ripples form on the edge of the cell, they would know that the proteins were interacting there.

The researchers put both modified proteins inside human skin cells and bathed the cells in the light-triggered chemical tool. Then, they shone a tiny UV beam directed on approximately ten percent of the edge of a skin cell. Ripples appeared only on the region of the cell near where the light was beamed, demonstrating that the tool could limit cell activity to a precise location in the cell.

The tool can be used in larger cells, Inoue says, to monitor as little as one percent of a specific molecule if the beam intensity is varied. That in turn could reveal in even more detail the secret affairs of proteins in cellular cubbyholes.

"With this technique, we can get a finer understanding of cell function on the molecular level," says Inoue. "Our technique allows us to monitor whatever molecule we choose in whichever tiny space we choose so that we can understand how a molecule functions in a specific part of a live cell."


Contact: Vanessa McMains
Johns Hopkins Medical Institutions

Related biology news :

1. Johns Hopkins researchers capture jumping genes
2. Johns Hopkins researchers reshape basic understanding of cell division
3. Hopkins team discovers sweet way to detect prediabetes
4. 2 Hopkins scientists awarded European honorary doctorates
5. Hopkins researchers put proteins right where they want them
6. Pancreatic Cancer Action Network-AACR Pathway to Leadership Grant awarded to Johns Hopkins Early Career investigator
7. Johns Hopkins scientists discover a controller of brain circuitry
8. Hopkins scientists ID 10 genes associated with a risk factor for sudden cardiac death
9. Johns Hopkins scientists pull proteins tail to curtail cancer
10. Johns Hopkins researchers detect sweet cacophony while listening to cellular cross-talk
11. Zoo researchers provide African sanctuaries road map
Post Your Comments:
(Date:5/24/2016)... , May 24, 2016 Ampronix facilitates superior patient care by providing unparalleled ... medical LCD display is the latest premium product recently added to the range of ... ... ... Sony 3d Imaging- LCD Medical Display- Ampronix News ...
(Date:5/3/2016)... 3, 2016  Neurotechnology, a provider of high-precision ... Automated Biometric Identification System (ABIS) , a complete ... MegaMatcher ABIS can process multiple complex biometric transactions ... of fingerprint, face or iris biometrics. It leverages ... and MegaMatcher Accelerator , which have been ...
(Date:4/19/2016)... The new GEZE SecuLogic access ... "all-in-one" system solution for all door components. It can ... door interface with integration authorization management system, and thus ... minimal dimensions of the access control and the optimum ... offer considerable freedom of design with regard to the ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... ... 23, 2016 , ... Charm Sciences, Inc. is pleased to ... AOAC Research Institute approval 061601. , “This is another AOAC-RI approval of the ... Vice President of Regulatory and Industrial Affairs. “The Peel Plate methods perform comparably ...
(Date:6/23/2016)... 2016  The Biodesign Challenge (BDC), a university competition ... harness living systems and biotechnology, announced its winning teams ... New York City . The ... projects at MoMA,s Celeste Bartos Theater during the daylong ... senior curator of architecture and design, and Suzanne ...
(Date:6/23/2016)... ... ... Supplyframe, the Industry Network for electronics hardware design and ... in Pasadena, Calif., the Design Lab’s mission is to bring together inventors and ... brought to market. , The Design Lab is Supplyframe’s physical representation of one ...
(Date:6/23/2016)... ... ... In a new case report published today in STEM CELLS Translational Medicine, doctors ... being treated for breast cancer benefitted from an injection of stem cells derived from ... frequent side effect of cancer treatment. , Lymphedema refers to the swelling ...
Breaking Biology Technology: