Navigation Links
Hopkins researchers use light to move molecules
Date:3/16/2011

Using a light-triggered chemical tool, Johns Hopkins scientists report that they have refined a means of moving individual molecules around inside living cells and sending them to exact locations at precise times.

This new tool, they say, gives scientists greater command than ever in manipulating single molecules, allowing them to see how molecules in certain cell locations can influence cell behavior and to determine whether cells will grow, die, move or divide. A report on the work was published online December 13 in the Journal of the American Chemical Society.

Studying how just one signaling molecule communicates in various parts of a living cell has posed a challenge for scientists investigating how different interactions influence cell behavior, such as the decision to move, change shape or divide.

"By using one magical chemical set off by light, we modified our previous technique for moving molecules around and gained much more control," says Takanari Inoue, Ph.D., assistant professor of cell biology and member of the Center for Cell Dynamics in the Institute for Basic Biomedical Sciences. "The advantage of using light is that it is very controllable, and by confining the light, we can manipulate communication of molecules in only a tiny region of the cell," he says.

Specifically, the Hopkins team designed a way to initiate and spatially restrict the molecular interactions to a small portion of the cell by attaching a light-triggered chemical to a bulky molecule, the bond between which would break when researchers shined a defined beam of ultraviolet light on it. This enabled the chemical to enter the cell and force two different and specific proteins in that cell to mingle when they otherwise wouldn't. Normally, these proteins would have nothing to do with each other without the presence of the light-triggered chemical, but researchers decided to take advantage of this mingling to explore how certain proteins in a cell behave when transported to precise locations.

Next, researchers modified the two mingling proteins by attaching special molecules to them one sent one of the proteins to the edge of the cell and another caused ripples to form on the edge of the cell so that if ripples form on the edge of the cell, they would know that the proteins were interacting there.

The researchers put both modified proteins inside human skin cells and bathed the cells in the light-triggered chemical tool. Then, they shone a tiny UV beam directed on approximately ten percent of the edge of a skin cell. Ripples appeared only on the region of the cell near where the light was beamed, demonstrating that the tool could limit cell activity to a precise location in the cell.

The tool can be used in larger cells, Inoue says, to monitor as little as one percent of a specific molecule if the beam intensity is varied. That in turn could reveal in even more detail the secret affairs of proteins in cellular cubbyholes.

"With this technique, we can get a finer understanding of cell function on the molecular level," says Inoue. "Our technique allows us to monitor whatever molecule we choose in whichever tiny space we choose so that we can understand how a molecule functions in a specific part of a live cell."


'/>"/>

Contact: Vanessa McMains
vmcmain1@jhmi.edu
410-502-9410
Johns Hopkins Medical Institutions
Source:Eurekalert

Related biology news :

1. Johns Hopkins researchers capture jumping genes
2. Johns Hopkins researchers reshape basic understanding of cell division
3. Hopkins team discovers sweet way to detect prediabetes
4. 2 Hopkins scientists awarded European honorary doctorates
5. Hopkins researchers put proteins right where they want them
6. Pancreatic Cancer Action Network-AACR Pathway to Leadership Grant awarded to Johns Hopkins Early Career investigator
7. Johns Hopkins scientists discover a controller of brain circuitry
8. Hopkins scientists ID 10 genes associated with a risk factor for sudden cardiac death
9. Johns Hopkins scientists pull proteins tail to curtail cancer
10. Johns Hopkins researchers detect sweet cacophony while listening to cellular cross-talk
11. Zoo researchers provide African sanctuaries road map
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/21/2016)... 2016 NuData Security announced today that Randy ... principal product architect and that Jon Cunningham ... development. Both will report directly to Christopher ... reflect NuData,s strategic growth in its product and ... demand and customer focus values. ...
(Date:6/16/2016)... , June 16, 2016 ... is expected to reach USD 1.83 billion by ... View Research, Inc. Technological proliferation and increasing demand ... are expected to drive the market growth. ... The development of advanced multimodal techniques ...
(Date:6/9/2016)... innovation leader in attendance control systems is proud to announce the introduction of fingerprint ... sure the right employees are actually signing in, and to even control the opening ... ... ... Photo ...
Breaking Biology News(10 mins):
(Date:12/2/2016)... ... December 01, 2016 , ... ... for North American hospitals, will present its chain-of-custody solution for tracking and securing ... Las Vegas, Nev., Dec. 4-8, 2016. , Aerocom has a proven solution for ...
(Date:12/2/2016)... IL (PRWEB) , ... December 01, 2016 , ... ... to congratulate long-term client Nanowear on their recent FDA Class II 510(k) clearance ... cleared a significant hurdle in commercializing remote cardiac monitoring devices that rely on ...
(Date:12/2/2016)... The immunohistochemistry (IHC) market is projected to reach ... during the forecast period of 2016 to 2021 dominated by immunohistochemistry ... the largest share of immunohistochemistry (IHC) market, by end user.   ... , , ... across 225 pages, profiling 10 companies and supported with 181 tables ...
(Date:11/30/2016)... ALBANY, New York , November 30, 2016 /PRNewswire/ ... exceptionally consolidated as a few players hold a dominant ... Lonza Group, Charles River Laboratories International, Inc., and Merck ... global market in 2015. Transparency Market Research observes that ... they are focused on development products that are do ...
Breaking Biology Technology: