Navigation Links
Hips take walking in stride; ankles put best foot forward in run
Date:5/24/2011

In a first-of-its-kind study comparing human walking and running motions and whether the hips, knees or ankles are the most important power sources for these motions researchers at North Carolina State University show that the hips generate more of the power when people walk, but the ankles generate more of the power when humans run. Knees provide approximately one-fifth or less of walking or running power.

The research could help inform the best ways of building assistive or prosthetic devices for humans, or constructing next-generation robotics, say NC State biomedical engineers Drs. Dominic Farris and Gregory Sawicki. The co-authors of a study on the mechanics of walking and running in the journal Interface, a Royal Society scientific journal, Sawicki and Farris are part of NC State's Human PoWeR (Physiology of Wearable Robotics) Lab.

A long history of previous studies have focused on the biomechanics of human locomotion from a whole-body or individual limbs perspective. But this study is the first to zoom in on the mechanical power generated by specific lower-limb joints in a single comprehensive study of walking and running across a range of speeds, Sawicki says.

The study shows that, overall, hips generate more power when people walk. That is, until humans get to the point at which they're speed walking walking so fast that it feels more comfortable to run at 2 meters per second. Hips generate 44 percent of the power when people walk at a rate of 2 meters per second, with ankles contributing 39 percent of the power.

When people start running at this 2-meter-per-second rate, the ankles really kick in, providing 47 percent of the power compared to 32 percent for the hips. Ankles continue to provide the most power of the three lower limb joints as running speeds increase, although the hips begin closing the distance at faster speeds.

"There seems to be a tradeoff in power generation from hips to ankles as you make the transition from walking to running," Sawicki says.

Both researchers are interested in how the study can help people who need assistance walking and running. Knowing which part of the lower limbs provide more power during the different activities can help engineers figure out how, depending on the person's speed and gait, mechanical power needs to be distributed.

"For example, assistive devices such as an exoskeleton or prosthesis may have motors near both the hip and ankle. If a person will be walking and then running, you'd need to redistribute energy from the hip to the ankle when the person makes that transition," Farris says.

Ten people walked and ran at various speeds on a specially designed treadmill in the study; a number of cameras captured their gait by tracking reflective markers attached to various parts of the participants' lower limbs while the treadmill captured data from the applied force.

The study examined walking and running on level ground in order to gauge the differences brought about by increased speed; walking and running on inclined ground is fundamentally different than walking and running on flat ground, the researchers say, and would likely skew the power generation results toward the hips and knees.

The joint Department of Biomedical Engineering is part of NC State's College of Engineering and the University of North Carolina-Chapel Hill's School of Medicine.


'/>"/>

Contact: Mick Kulikowski
mick_kulikowski@ncsu.edu
919-515-8387
North Carolina State University
Source:Eurekalert

Related biology news :

1. New equation calculates cost of walking for first time
2. Notre Dame researcher helps discover walking properties of bacteria
3. Advances made in walking, running robots
4. Human use heel first gait because it is efficient for walking
5. Are high speed elephants running or walking?
6. Ladder-walking locusts show big brains arent always best
7. Bizarre walking bat has ancient heritage
8. ONR, Marine Corps show alternative energy use at forward operating bases can save dollars, lives
9. Stroke research takes 2 steps forward
10. $1.6 million to take forward breakthrough research in heart disease
11. Growing drought-tolerant crops inching forward
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/28/2016)... -- First quarter 2016:   , Revenues ... first quarter of 2015 The gross margin was 49% ... and the operating margin was 40% (-13) Earnings per ... from operations was SEK 249.9 M (21.2) , Outlook ... 7,000-8,500 M. The operating margin for 2016 is estimated ...
(Date:4/15/2016)...  A new partnership announced today will help ... in a fraction of the time it takes ... life insurance policies to consumers without requiring inconvenient ... Diagnostics, rapid testing (A1C, Cotinine and HIV) and ... weight, pulse, BMI, and activity data) available at ...
(Date:3/31/2016)... 2016   LegacyXChange, ... "Company") LegacyXChange is excited to release its ... to be launched online site for trading 100% guaranteed ... will also provide potential shareholders a sense of the ... an industry that is notorious for fraud. The video ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... ... 2016 , ... Supplyframe, the Industry Network for electronics hardware ... . Located in Pasadena, Calif., the Design Lab’s mission is to bring together ... built and brought to market. , The Design Lab is Supplyframe’s physical representation ...
(Date:6/23/2016)... 23, 2016  Blueprint Bio, a company dedicated to ... medical community, has closed its Series A funding round, ... "We have received a commitment from Forentis ... need to meet our current goals," stated Matthew ... runway to complete validation on the current projects in ...
(Date:6/23/2016)... WI (PRWEB) , ... June 23, 2016 , ... ... focused on quality, regulatory and technical consulting, provides a free webinar ... presented on July 13, 2016 at 12pm CT at no charge. , Incomplete ...
(Date:6/22/2016)... SAN DIEGO , June 22, 2016 /PRNewswire/ ... partnership that will allow them to produce up ... (HiPSC) from one lot within one week. These ... their time laboriously preparing cells and spend more ... made possible through a proprietary, high-volume manufacturing process ...
Breaking Biology Technology: