Navigation Links
Halting methane squanderlust
Date:5/21/2008

RICHLAND, Wash. -- The pipes that rise from oil fields, topped with burning flames of natural gas, waste fossil fuels and dump carbon dioxide into the air. In new work, researchers have identified the structure of a catalytic material that can turn methane into a safe and easy-to-transport liquid. The insight lays the foundation for converting excess methane into a variety of useful fuels and chemicals.

"There's a big interest in doing something with this 'stranded' methane other than flaring it off," said chemist Chuck Peden of the Department of Energy's Pacific Northwest National Laboratory. "An important thing researchers have struggled with is determining the structure of the active catalyst."

That catalyst -- molybdenum oxide sitting on a zeolite mineral -- converts methane gas into the more tractable liquid benzene. But the process is not yet commercially viable. Scientists don't understand enough about the molecular details to improve the catalyst. Now, researchers at PNNL and the Chinese Academy of Sciences' Dalian Institute of Chemical Physics in Dalian have worked out some of the details that will help researchers zoom in on an efficient catalyst.

They reported their results March 26 in the Journal of the American Chemical Society. This work is the first publication to come out of the International Consortium for Clean Energy, a collaboration between PNNL, the DICP and China's Institute of Coal Chemistry.

To get these results, the chemists -- led by Peden at PNNL and Xinhe Bao at DICP -- used the world's largest instrument of its kind -- a 900-megahertz nuclear magnetic resonance (NMR) spectrometer. The NMR is armed with one of the strongest magnets constructed and can be outfitted to investigate solid samples, a step above its smaller cousins.

The combination of molybdenum oxide and a zeolite mineral had been shown in 1993 to convert methane, but the catalyst has been difficult to analyse. Researchers know that the zeolite anchors molybdenum oxide in place so methane and molybdenum oxide can react chemically, either on or in the zeolite channels. But no one could tell which comprised the reactive form: a small nugget of one or two molecules, or a larger cluster of many molybdenum oxide molecules.

"This uncertainty has led to a controversy in the scientific literature about the active phase and reaction mechanism of methane activation on these promising catalyst materials," said DICP's Bao.

Enter the world's largest NMR, uniquely capable of addressing this issue. The technological problem lay in the molybdenum oxide itself. To study this particular oxide with NMR, the chemists needed to pick up the signal from one variant of molybdenum, 95Mo; the ultra-high field of the NMR, housed at the DOE's Environmental Molecular Sciences Laboratory on the PNNL campus, allowed them to do so.

"The higher magnetic field improves the signal to noise," said Peden. "And its large sample volume allowed us to put enough catalyst into the spectrometer to overcome the poor sensitivity of 95Mo NMR."

The researchers painstakingly prepared catalysts with increasing concentrations of molybdenum in the zeolite scaffold and focused the 900 MHz NMR on the samples. The data revealed two different forms of the catalyst, as expected. One form contained the smaller nugget and the other form comprised the much larger clusters. When the concentration of molybdenum rose, more of these large clusters formed.

Then the team added methane and measured how much got converted into benzene by the catalysts. They found that when more smaller nuggets were present, more benzene was made, indicating the variety of one or two molybdenum oxide molecules was the reactive one.

Now, said Peden, the challenge is to design and produce the active form of the catalyst that could be used for large-scale benzene production, research that Bao and his group are already working on.

"We need to figure out how to get that structure and keep it that way," Bao said.


'/>"/>

Contact: Mary Beckman
mary.beckman@pnl.gov
509-375-3688
DOE/Pacific Northwest National Laboratory
Source:Eurekalert

Related biology news :

1. Profound immune system discovery opens door to halting destruction of lupus
2. Deep sea methane scavengers captured
3. Paired microbes eliminate methane using sulfur pathway
4. Scientists find good news about methane bubbling up from the ocean floor
5. Methane from microbes: a fuel for the future
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/30/2017)... , March 30, 2017 Trends, opportunities ... (physiological and behavioral), by technology (fingerprint, AFIS, iris recognition, ... recognition, and others), by end use industry (government and ... immigration, financial and banking, and others), and by region ... , Asia Pacific , and ...
(Date:3/24/2017)... Research and Markets has announced the addition of the ... Forecast to 2025" report to their offering. ... The Global Biometric Vehicle Access System ... over the next decade to reach approximately $1,580 million by 2025. ... forecasts for all the given segments on global as well as ...
(Date:3/22/2017)... LIVERMORE, Calif. , March 21, 2017 ... recognition analytics company serving law enforcement agencies, announced today ... Sheridan as director of public safety business development. ... of diversified law enforcement experience, including a focus on ... Vigilant. In his most recent position, Mr. Sheridan served ...
Breaking Biology News(10 mins):
(Date:6/22/2017)... ... June 22, 2017 , ... ... specialists DST Diagnostische Systeme & Technologien GmbH, thereby expanding its product portfolio to ... from hay fever, urticaria, asthma, atopic eczema or a food allergy. Allergies are ...
(Date:6/22/2017)... Frederick, MD (PRWEB) , ... June 22, 2017 ... ... software solutions provider, announced the release of Limfinity® version 6.5, a content-packed update ... Limfinity® framework continue to gain a larger and more diverse base of customers ...
(Date:6/20/2017)... Pa. , June 20, 2017  Kibow Biotech ... pleased to announce the issuance of a new patent ... or hyperuricemia by the U.S. Patent and Trademark Office ... a winner of the Buzz of Bio award in ... is akin to developing non-drug approaches to chronic disease. ...
(Date:6/19/2017)... ... June 19, 2017 , ... EDETEK, Inc., a clinical ... it is launching two new additions of its award-winning cloud-based platform CONFORM™: Information ... the DIA 2017 Annual Meeting in Chicago, IL, June 19-22, 2017. , “Modern ...
Breaking Biology Technology: