Navigation Links
Genetic variants of USF1 are associated with the increased risk for cardiovascular disease
Date:4/7/2008

Cardiovascular diseases (CVD) are major contributors to morbidity and mortality worldwide. Several interacting environmental, biochemical, and genetic risk factors can increase disease susceptibility. While some of the genes involved in the etiology of CVD are known, many are yet to be discovered. During the last few decades, scientists have searched for these genes with genome-wide linkage and association methods, and with more targeted candidate gene studies.

Master of Science, Kati Kristiansson, from the research group of Professor Leena Peltonen at the National Public Health Institute and the University of Helsinki, Finland, has investigated variation within the upstream transcription factor 1 (USF1) gene locus in relation to CVD risk factors, atherosclerosis, and incidence and prevalence of CVD.

USF1 gene was first identified in Finnish families ascertained for familial combined hyperlipidemia, a common dyslipidemia predisposing to coronary heart disease. The gene encodes a ubiquitously expressed transcription factor regulating expression of several genes from lipid and glucose metabolism, inflammation, and endothelial function.

We examined association between USF1 variants and several CVD risk factors, such as lipid phenotypes, body composition measures, and metabolic syndrome, in two prospective population cohorts, and our data suggested that USF1 contributes to these CVD risk factors at the population level, Kristiansson says. Notably, the associations with quantitative measurements were mostly detected among study subjects with CVD or metabolic syndrome, suggesting complex interactions between USF1 effects and the pathophysiological state of an individual.

To address the question if carriership of this risk allele has a direct impact on the atherosclerotic lesions of the coronary arteries and abdominal aorta, Kristansson used two study samples of middle-aged men with detailed measurements of atherosclerosis obtained in autopsy. It turned out that USF1 variation significantly associated with the size of the areas of several types of arterial wall lesions, especially with calcification of the arteries.

Finally, when Kristiansson tested what effect the USF1 risk variants have on sudden cardiac death and incidence of CVD at the population level, she found out that the risk variant increased the risk of sudden cardiac death of the same study subjects. Furthermore, USF1 alleles associated with incidence of CVD in Finnish population follow-up cohorts. These associations were especially prominent among women, suggesting a sex specific effect, which has also been detected in subsequent studies.

In conclusion, USF1 seems to have a role in the etiology of CVD. Additional studies are warranted to identify functional variants and to study interactions between USF1 and other genetic or environmental factors. These studies, which uncover the details of the disease etiology, provide tools for the prevention and treatment cardiovascular disease, Kristiansson states.


'/>"/>

Contact: M.Sc. Kati Kristiansson
kati.kristiansson@ktl.fi
358-456-389-404
University of Helsinki
Source:Eurekalert

Related biology news :

1. Does the desire to consume alcohol and tobacco come from our genetic makeup?
2. Diverse genetic abnormalities lead to NF-κB activation in multiple myeloma
3. Many parents at-risk for cancer disclose genetic test results to children
4. Genetics determine optimal drug dose of common anticoagulant
5. Claims of sex-related differences in genetic association studies often not properly validated
6. American College of Medical Genetics responds to new FDA labeling decision for warfarin
7. UNC study questions FDA genetic-screening guidelines for cancer drug
8. Genome study shines light on genetic link to height
9. Selexis Announces Advanced Approach to Maximize Power of Genetic Elements for Rapid Development of High Performance Cell Lines
10. Genes, Environment and Health Initiative invests in genetic studies, environmental monitoring
11. Rutgers Genetics receives $7.8 million for autism research
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:1/6/2017)... 2017  Privately-held CalciMedica, Inc., announced that it ... of a novel calcium release-activated calcium (CRAC) channel ... Acute pancreatitis, sudden painful inflammation of ... can be very serious.  In severe cases it can ... hospital stays, time in the ICU and substantial ...
(Date:1/4/2017)... 2017  CES 2017 – Valencell , the ... announced the launch of two new versions of ... biometric sensor modules that incorporate the best of ... expertise. The two new designs include Benchmark BE2.0, ... and Benchmark BW2.0, a 2-LED version of its ...
(Date:12/20/2016)... , Dec. 20, 2016 The ... sharing, rental and leasing is stoking significant interest ... radio frequency technology, Bluetooth low energy (BLE), biometrics ... as the next wave of wireless technologies in ... access system to advanced access systems opens the ...
Breaking Biology News(10 mins):
(Date:1/21/2017)... 2017 Aratana Therapeutics, Inc. (NASDAQ: ... licensing, development and commercialization of innovative biopharmaceutical products for ... in North America 2016. ... based on the FDA approval of three innovative therapeutics ... (capromorelin oral solution) and NOCITA ® (bupivacaine ...
(Date:1/20/2017)... -- Ginkgo Bioworks, the organism company, announced today ... synthesis and assembly of DNA. The acquisition will ... DNA into Ginkgo,s automated organism engineering foundries, enabling ... new organism designs for application across a wide ... to significantly increase the world,s capacity to cost-effectively ...
(Date:1/19/2017)...  Market Research Future has a half cooked research report on ... growing rapidly and expected to reach USD 450 Million by the ... ... has been assessed as a swiftly growing market and expected that ... coming future. There has been a tremendous growth in the prevalence ...
(Date:1/19/2017)... ... January 19, 2017 , ... ... solutions for pharmaceutical research and development (R&D), today announced the launch of ... analysis and interpretation for the rapidly evolving field of precision medicine. ...
Breaking Biology Technology: