Navigation Links
Gene flow may help plants adapt to climate change
Date:6/28/2011

The traffic of genes among populations may help living things better adapt to climate change, especially when genes flow among groups most affected by warming, according to a UC Davis study of the Sierra Nevada cutleaved monkeyflower. The results were published online June 27 by the journal Proceedings of the National Academy of Sciences.

The findings have implications for conservation strategies, said Sharon Strauss, professor of evolution and ecology at UC Davis and an author of the study.

"In extreme cases where we might consider augmenting genetic resources available to imperiled populations, it might be best to obtain these genes from populations inhabiting similar kinds of habitats," Strauss said.

Graduate student Jason Sexton, with Strauss and Kevin Rice, professor of plant sciences, studied the monkeyflower (Mimulus laciniatus), an annual plant that lives in mossy areas of the Sierra at elevations of 3,200 feet to 10,000 feet.

Mountain gradients are useful for studying the effects of climate change, Strauss said, because they enable scientists to reproduce the effects of climate change without changing other factors, such as day length. The plants are already living across a range of temperatures, with those at lower elevations exposed to warmer conditions.

Sexton cross-pollinated monkeyflowers from two different locations at the warm, low-elevation edge of the plants' range with monkeyflowers from the middle of the range. All the hybrids were then grown in the field at the low end of the range.

As the researchers observed the growing monkeyflowers, they were able to test two contrasting predictions about how gene flow should affect plants at the edge of the range. The first prediction was that any mixing of genes from a wider population would help plants adapt to warming conditions. The second was that genes from the center of the range that did not help plants adapt would dilute any adaptive genes, negating their benefit.

"Gene flow" describes the movement of genetic traits within and among populations, as individual animals or plants breed.

To answer these questions, the researchers measured how the mixing of genes from different elevations affected the plants' ability to live at the warm edge of their range, through traits such as time for seedlings to emerge, time to flowering and overall reproductive success.

The study showed that the first prediction was true gene flow did help the plants adapt to a warmer environment.

"We generally found that there were benefits from gene flow, but gene flow from other warm-edge areas was most beneficial," Strauss said.

Sexton noted that hybrids of monkeyflowers from two warm-edge populations did better than either of their parents, perhaps because the populations had been using different genes to adapt to warm environments.

"When added together, their performance jumped," he said.

Often considered genetically meager, edge populations should be high-priority conservation targets since they may possess adaptations to their unique environments, Sexton said.


'/>"/>

Contact: Andy Fell
ahfell@ucdavis.edu
530-752-4533
University of California - Davis
Source:Eurekalert  

Related biology news :

1. Plants teach humans a thing or two about fighting diseases
2. Study reveals important aspects of signaling across cell membranes in plants
3. Healing times for dental implants could be cut
4. Adjustable valves gave ancient plants the edge
5. First-of-its-kind fluorescence map offers a new view of the worlds land plants
6. Tapping into plants is the key to combat climate change, says scientist
7. Researchers from the Viikki Biocenter discover how plants control the formation of wood cells
8. Medicines from plants
9. UF research aims to help preserve plants, animals caught between forest fragments
10. Turning plants into power houses
11. NRELs multi-junction solar cells teach scientists how to turn plants into powerhouses
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Gene flow may help plants adapt to climate change
(Date:4/19/2016)... , UAE, April 20, 2016 ... be implemented as a compact web-based "all-in-one" system solution ... the biometric fingerprint reader or the door interface with ... of modern access control systems. The minimal dimensions of ... ID readers into the building installations offer considerable freedom ...
(Date:4/13/2016)... -- IMPOWER physicians supporting Medicaid patients in Central ... in telehealth thanks to a new partnership with higi. ... patients can routinely track key health measurements, such as ... when they opt in, share them with IMPOWER clinicians ... retail location at no cost. By leveraging this data, ...
(Date:3/23/2016)... , March 23, 2016 ... Interesse erhöhter Sicherheit Gesichts- und Stimmerkennung mit ... Inc. (NASDAQ: MESG ), ein ... dass das Unternehmen mit SpeechPro zusammenarbeitet, um ... der Finanzdienstleistungsbranche, wird die Möglichkeit angeboten, im ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... (PRWEB) , ... June 23, 2016 , ... ... today announced the launch of the Supplyframe Design Lab . Located in ... to explore the future of how hardware projects are designed, built and brought ...
(Date:6/23/2016)... 2016 Apellis Pharmaceuticals, Inc. today announced ... of its complement C3 inhibitor, APL-2. The trials ... dose studies designed to assess the safety, tolerability, ... in healthy adult volunteers. Forty subjects ... single dose (ranging from 45 to 1,440mg) or ...
(Date:6/23/2016)... 23, 2016 On Wednesday, June 22, ... down 0.22%; the Dow Jones Industrial Average edged 0.27% lower ... 2,085.45, down 0.17%. Stock-Callers.com has initiated coverage on the following ... Therapeutics (NASDAQ: NKTR ), Aralez Pharmaceuticals Inc. (NASDAQ: ... BIND ). Learn more about these stocks by accessing ...
(Date:6/23/2016)... ... June 23, 2016 , ... Velocity Products, ... tools designed, tuned and optimized exclusively for Okuma CNC machining centers at The ... of a collaboration among several companies with expertise in toolholding, cutting tools, machining ...
Breaking Biology Technology: