Navigation Links
Formula discovered for longer plant life
Date:9/23/2008

This release is available in German.

Plants that grow more slowly stay fresh longer. In their study now published in PLoS Biology, scientists at the Max Planck Institute for Developmental Biology in Tbingen have shown that certain small sections of genes, so-called microRNAs, coordinate growth and aging processes in plants. These microRNAs inhibit certain regulators, known as TCP transcription factors. These transcription factors in turn influence the production of jasmonic acid, a plant hormone. The higher the number of microRNAs present, the lower the number of transcription factors that are active, and the smaller the amount of jasmonic acid, which is produced by the plant. The plant therefore ages more slowly, as this hormone is important for the plant's aging processes. The researchers have succeeded for the first time in describing the antagonistic regulation of growth and aging in plants. Since the quantity of microRNAs in the plants can be controlled by genetic methods, it may be possible in future to cultivate plants that live longer and grow faster. (PLoS Biology, September 23, 2008)

MicroRNAs are short, single-strand sections of genes that regulate other genes. They do this by binding to complementary sections of the genetic material, thus preventing them from being read and implemented in genetic products. In plants, microRNAs mainly inhibit other regulators, so-called transcription factors. These factors can switch genes on or off by binding to DNA sections, thus activating or blocking them so that either too many or too few proteins are formed. Since proteins control metabolic processes, an imbalance leads to more or less clearly visible changes to the plant.

The scientists in Prof. Detlef Weigel's department at the Max Planck Institute for Developmental Biology have investigated the effects that the transcription factors of the TCP family have on the growth and aging of the thale cress model plant (Arabidopsis thaliana). These transcription factors are regulated by the microRNA miR319.

It was already known that miR319-regulated transcription factors affect the growth of leaves. Using a combination of biochemical and genetic analyses, the researchers have now discovered that the transcription factors also regulate those genes that are essential for the formation of the plant hormone jasmonic acid. The higher the amount of microRNA miR319 present in the plant, the lower the number of transcription factors that are produced. This results in smaller amounts of jasmonic acid which can be synthesized. Plants containing little jasmonic acid age more slowly: The leaves become yellow and the plant dies. This process can be stopped by treating the plant with the hormone.

"Our studies show that the transcription factors, which are regulated by the microRNA miR319, exert a negative influence on the growth of plants, and also lead to premature aging. The mechanism discovered here is a further milestone in the attempt to explain the relationships of genetic regulation in plants. Only when we have a better understanding of these processes will we be able to produce plants that have particularly desired properties," says Detlef Weigel, who heads the project.


'/>"/>

Contact: Dr. Detlef Weigel
Detlef.Weigel@tuebingen.mpg.de
49-7071-601-1410
Max-Planck-Gesellschaft
Source:Eurekalert  

Related biology news :

1. University of Pennsylvania researchers develop formula to gauge risk of disease clusters
2. New formula for combating the greenhouse gas nitrous oxide
3. Louisiana Tech researchers feature drug reformulation in prestigious journal
4. Researchers study facial structures, brain abnormalities to reveal formula for detection of autism
5. New, more direct pathways from outside the cell-to-cell nuclei discovered
6. New continent and species discovered in Atlantic study
7. Ancient organisms discovered in Canadian gold mine
8. New golden frog discovered in remote region of Colombia
9. Antioxidant to retard wrinkles discovered by Hebrew University researcher
10. One species entire genome discovered inside anothers
11. New molecules discovered that block cancer cells from modifying cell DNA
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Formula discovered for longer plant life
(Date:6/7/2016)... June 7, 2016  Syngrafii Inc. and San ... relationship that includes integrating Syngrafii,s patented LongPen™ eSignature ... This collaboration will result in greater convenience for ... union, while maintaining existing document workflow and compliance ... ...
(Date:6/2/2016)...   The Weather Company , an IBM Business (NYSE: ... capability in which consumers will be able to interact with ... via voice or text and receive relevant information about the ... Marketers have long sought an advertising solution that can create ... relevant and valuable; and can scale across millions of interactions ...
(Date:5/24/2016)... patient care by providing unparalleled technology to leaders of the medical imaging industry.  As ... added to the range of products distributed by Ampronix. Photo - ... ... ... ...
Breaking Biology News(10 mins):
(Date:12/4/2016)... ... December 03, 2016 , ... ... studies. A microbiome impact grant award has been made to Dr. Renato Polimanti ... smoking and drinking on the oral microbiome. Grant proposals have been vetted by ...
(Date:12/2/2016)... (PRWEB) , ... December 02, 2016 , ... ... MA to soon resume cervical and lumbar disc production, company President, Jake Lubinski ... surgeons who are implanting the AxioMed disc in Bern, Lucerne, and Zurich to ...
(Date:12/2/2016)... Dec. 2, 2016 Amgen (NASDAQ: AMGN ... announced the submission of a Marketing Authorization Application (MAA) to ... candidate to Avastin ® (bevacizumab). The companies believe this ... EMA. "The submission of ABP 215 to ... expand our oncology portfolio," said Sean E. Harper , ...
(Date:12/2/2016)... ... December 01, 2016 , ... ACEA Biosciences, Inc. announced ... I/II clinical trials for AC0010 at the World Conference on Lung Cancer 2016, taking ... update on the phase I/II clinical trials for AC0010 in patients with advanced non-small ...
Breaking Biology Technology: