Navigation Links
Enhanced NIST instrument enables high-speed chemical imaging of tissues

A research team from the National Institute of Standards and Technology (NIST), working with the Cleveland Clinic, has demonstrated a dramatically improved technique for analyzing biological cells and tissues based on characteristic molecular vibration "signatures." The new NIST technique is an advanced form of the widely used spontaneous Raman spectroscopy, but one that delivers signals that are 10,000 times stronger than obtained from spontaneous Raman scattering, and 100 times stronger than obtained from comparable "coherent Raman" instruments, and uses a much larger portion of the vibrational spectrum of interest to cell biologists.*

The technique, a version of "broadband, coherent anti-Stokes Raman scattering" (BCARS), is fast and accurate enough to enable researchers to create high-resolution images of biological specimens, containing detailed spatial information on the specific biomolecules present at speeds fast enough to observe changes and movement in living cells, according to the NIST team.

Raman spectroscopy is based on a subtle interplay between light and molecules. Molecules have characteristic vibration frequencies associated with their atoms flexing and stretching the molecular bonds that hold them together. Under the right conditions, a photon interacting with the molecule will absorb some of this energy from a particular vibration and emerge with its frequency shifted by that frequencythis is "anti-Stokes scattering." Recording enough of these energy-enhanced photons reveals a characteristic spectrum unique to the molecule. This is great for biology because in principle it can identify and distinguish between many complex biomolecules without destroying them and, unlike many other techniques, does not alter the specimen with stains or fluorescent or radioactive tags.

Using this intrinsic spectral information to map specific kinds of biomolecules in an image is potentially very powerful, but the signal levels are very faint, so researchers have worked for years to develop enhanced methods for gathering these spectra.** "Coherent" Raman methods use specially tuned lasers to both excite the molecular vibrations and provide a bright source of probe photons to read the vibrations. This has partially solved the problem, but the coherent Raman methods developed to date have had limited ability to access most of the available spectroscopic information.

Most current coherent Raman methods obtain useful signal only in a spectral region containing approximately five peaks with information about carbon-hydrogen and oxygen-hydrogen bonds. The improved method described by the NIST team not only accesses this spectral region, but also obtains excellent signal from the "fingerprint" spectral region, which has approximately 50 peaksmost of the useful molecular ID information.

The NIST instrument is able to obtain enhanced signal largely by using excitation light efficiently. Conventional coherent Raman instruments must tune two separate laser frequencies to excite and read different Raman vibration modes in the sample. The NIST instrument uses ultrashort laser pulses to simultaneously excite all vibrational modes of interest. This "intrapulse" excitation is extremely efficient and produces its strongest signals in the fingerprint region. "Too much light will destroy cells," explains NIST chemist Marcus Cicerone, "So we've engineered a very efficient way of generating our signal with limited amounts of light. We've been more efficient, but also more efficient where it counts, in the fingerprint region."

Raman hyperspectral images are built up by obtaining spectra, one spatial pixel at a time. The hundred-fold improvement in signal strength for the NIST BCARS instrument makes it possible to collect individual spectral data much faster and at much higher quality than beforea few milliseconds per pixel for a high-quality spectrum versus tens of milliseconds for a marginal quality spectrum with other coherent Raman spectroscopies, or even seconds for a spectrum from more conventional spontaneous Raman instruments. Because it's capable of registering many more spectral peaks in the fingerprint region, each pixel carries a wealth of data about the biomolecules present. This translates to high-resolution imaging within a minute or so whereas, notes NIST electrical engineer Charles Camp, Jr., "It's not uncommon to take 36 hours to get a low-resolution image in spontaneous Raman spectroscopy."

"There are a number of firsts in this paper for Raman spectroscopy," Camp adds. "Among other things we show detailed images of collagen and elastinnot normally identified with coherent Raman techniquesand multiple peaks attributed to different bonds and states of nucleotides that show the presence of DNA or RNA."


Contact: Michael Baum
National Institute of Standards and Technology (NIST)

Related biology news :

1. Enhanced royal jelly produces jumbo queen bee larvae
2. Potential drug molecule shows enhanced anti-HIV activity
3. Discovery may pave way to genetically enhanced biofuel crops
4. Musicians who learn a new melody demonstrate enhanced skill after a nights sleep
5. Xyngular Announces the Launch of its New Xyng Enhanced Formula
6. Better broccoli, enhanced anti-cancer benefits with longer shelf life
7. 660 nm red light-enhanced BMSCs transplantation for hypoxic-ischemic brain damage
8. WHOI scientists/engineers partner with companies to market revolutionary new instruments
9. UNH labs receive 2 NSF grants totalling $1.35m for research instruments
10. Exclusive agreement to distribute Affinity Biosensors Archimedes system extends Malvern Instruments biopharma solutions
11. BiOptix to highlight new 404pi instrument at European symposia
Post Your Comments:
Related Image:
Enhanced NIST instrument enables high-speed chemical imaging of tissues
(Date:11/26/2015)... , Nov. 26, 2015 Research and ... the "Capacitive Fingerprint Sensors - Technology and Patent ... --> --> Fingerprint ... especially in smartphones. The fingerprint sensor vendor Idex forecasts ... sensor units in mobile devices and of the fingerprint ...
(Date:11/19/2015)... YORK , Nov. 19, 2015  Although some ... market is dominated by a few companies, according to ... companies own 51% of the market share of the ... The World Market for Molecular Diagnostic s ... "The market is still controlled by one company ...
(Date:11/17/2015)... , November 17, 2015 Paris ... 2015.   --> Paris from 17 ... DERMALOG, the biometrics innovation leader, has invented the first ... fingerprints on the same scanning surface. Until now two different ... Now one scanner can capture both on the same ...
Breaking Biology News(10 mins):
(Date:12/1/2015)... , Dec. 1, 2015 Researchers at the ... Institute for Brain Research at MIT have engineered changes ... cut down on "off-target" editing errors. The refined technique ... use of genome editing. Science , ... three of the approximately 1,400 amino acids that make ...
(Date:12/1/2015)... , Dec. 1, 2015 Frost & ... program. This program addresses ways companies can innovate ... --> ... --> ... healthcare, as well as the disrupting factors altering ...
(Date:12/1/2015)... Minn. , Dec. 1, 2015  The Minnesota ... recipient of the 2015 Tekne Award in the Small ... at the Minneapolis Convention ... have played a significant role in developing new technologies ... living around the world. Clostridium difficile ...
(Date:12/1/2015)... , Dec. 1, 2015  CardioCell LLC, a ... stem cells for cardiovascular indications, intends to proceed ... based on recommendations from a Heart Failure Advisory ... Scientific Advisory Board members . In a ... Phase IIa safety and efficacy data from CardioCell,s ...
Breaking Biology Technology: