Navigation Links
Disrupting common parasites' ability to 'talk' to each other reduces infection

St. Louis, Jan. 9, 2007 One of the most common human parasites, Toxoplasma gondii, uses a hormone lifted from the plant world to decide when to increase its numbers and when to remain dormant, researchers at Washington University School of Medicine in St. Louis have found.

The scientists report this week in Nature that they successfully blocked production of the molecule, known as abscisic acid (ABA), with a plant herbicide. Low doses of the herbicide prevented fatal T. gondii infection in mice.

"As a target for drug development, this pathway is very attractive for several reasons," says author L. David Sibley, Ph.D., professor of molecular microbiology. "For example, because of its many roles in plant biology, we already have several inhibitors for it. Also, the plant-like nature of the target decreases the chances that blocking it with a drug will have significant negative side effects in human patients."

T. gondii's relatives include the parasites that cause malaria, which also appear to have genes for ABA synthesis. The new findings may explain an earlier study where a group of researchers found that the same herbicide inhibits malaria.

Infection with T. gondii, or toxoplasmosis, is perhaps most familiar to the general public from the recommendation that pregnant women avoid changing cat litter. Cats are commonly infected with the parasite, as are some livestock and wildlife. Humans can also become infected by eating undercooked meat or by drinking water contaminated with spores shed by cats.

Epidemiologists estimate that as many as one in every four humans is infected with T. gondii. Infections are typically asymptomatic, only causing serious disease in patients with weakened immune systems. In some rare cases, though, infection in patients with healthy immune systems leads to serious eye or central nervous system disease, or congenital defects in the fetuses of pregnant women.

Scientists have known for approximately a decade that protozoan parasites like T. gondii and those that cause malaria contain many plant-like pathways, or groups of genes or proteins put to use for a particular biological task. The common ancestor of these parasites incorporated an algal cell millions of years ago. This endosymbiotic relationship results in the incorporated organism becoming a regular part of the larger organism's cell structure. The parasites can make use of the algae's genes, many of which were transferred to the parasite's nucleus to control processes in a structure that is a remnant of the original algal cells.

That earlier revelation led to ongoing efforts to develop drugs that block plant-like proteins parasites use to synthesize metabolically important structures or compounds. However, until this study, no one had found the parasites using a plant-like protein for signaling purposes.

"Signals are sometimes even better targets for drug development than biosynthetic pathways," says Sibley. "Taking out a biosynthetic pathway means you take away one thing from the parasite. But if you can successfully disable a key signal, this may potentially disrupt many more aspects of the parasite's metabolism."

Kisaburo Nagamune, Ph.D., formerly a postdoctoral fellow in Sibley's laboratory, found the ABA pathway in T. gondii while searching the parasite's genome for pathways linked to calcium signalling. Researchers knew that calcium signaling was important to the parasite's ability to control its complex reproductive cycle, but a search for genes similar to the calcium signaling pathways found in mammalian cells, such as the calcium receptors or channels that are common in heart cells and neurons, found few analogs in T. gondii.

ABA has many prominent roles in plant biology, including regulation of flowering and seed dormancy. A series of experiments led by Nagamune, now an assistant professor at Tsukuba University in Japan, showed that ABA helps the parasites control their reproductive cycle by communicating with each other in the host cell. When they sense high enough levels of ABA, the parasites break out of host cells; otherwise, they stay in the host cell and remain dormant.

With help of online databases and botanists at the Donald Danforth Plant Science Center in St. Louis and elsewhere, researchers quickly identified a class of herbicides that block ABA production and that are already in use commercially and screened for low toxicity to animals.

Scientists tested one of those herbicides against toxoplasmosis, labeling the test parasites with the firefly luciferase protein. Whole animal imaging showed that treatment with the herbicide reduced the number of parasites in infected mice during the initial infection and also reduced the chronic burden.

Sibley plans further studies to learn what other aspects of T. gondii biology are controlled by ABA and whether other inhibitors of ABA might make more potent treatments for toxoplasmosis. Nagamune is exploring the new findings' implications for treatment of malaria.


Contact: Michael C. Purdy
Washington University School of Medicine

Related biology news :

1. Risk of common vaginal infection linked to preterm birth appears higher for blacks
2. Features of replication suggest viruses have common themes, vulnerabilities
3. Genetics determine optimal drug dose of common anticoagulant
4. All eukaryotic kinases share 1 common set of substrates
5. 60 second test could help early diagnosis of common brain diseases
6. Soy isoflavone may inhibit common gastrointestinal illness in infants
7. The importance of gene regulation for common human disease
8. Genes and environment grant funds close look at nature-nurture overlap in common diseases
9. Thriving hybrid salamanders contradict common wisdom
10. UCI researchers restore memory process in most common form of mental disability
11. Drug commonly used to treat bipolar disorder dramatically increases lifespan in worms
Post Your Comments:
(Date:11/19/2015)... NEW YORK , Nov. 19, 2015  Although ... the market is dominated by a few companies, according ... Qiagen. These companies own 51% of the market share of ... report, The World Market for Molecular Diagnostic ... "The market is still controlled by one ...
(Date:11/17/2015)... , November 17, 2015 ... 19 novembre  2015.  --> Paris , ... --> DERMALOG, le leader de l,innovation biométrique, a ... fois passeports et empreintes sur la même surface de ... passeports et l,autre pour les empreintes digitales. Désormais, un ...
(Date:11/12/2015)... , Nov. 12, 2015  A golden retriever ... Duchenne muscular dystrophy (DMD) has provided a new lead ... Children,s Hospital, the Broad Institute of MIT and Harvard ... Brazil . Cell, pinpoints ... dogs "escape" the disease,s effects. The Boston Children,s lab ...
Breaking Biology News(10 mins):
(Date:11/25/2015)... SAN DIEGO , Nov. 25, 2015 ... that management will participate in a fireside chat discussion ... New York . The discussion is ... Time. .  A replay will ... Contact:  Media Contact:McDavid Stilwell  , Julie NormartVP, Corporate ...
(Date:11/24/2015)... ... 24, 2015 , ... The United States Golf Association (USGA) today announced Dr. ... Award. Presented annually since 1961, the USGA Green Section Award recognizes an individual’s distinguished ... , Clarke, of Iselin, N.J., is an extension specialist of turfgrass pathology in ...
(Date:11/24/2015)... ... November 24, 2015 , ... ... metabolism. But unless it is bound to proteins, copper is also toxic to ... researchers at Worcester Polytechnic Institute (WPI) will conduct a systematic study of copper ...
(Date:11/24/2015)... --> --> ... Synthesis Market by Product & Services (Primer, Probe, Custom ... RNAi), End-User (Research, Pharmaceutical & Biotech, Diagnostic Labs) - ... is expected to reach USD 1,918.6 Million by 2020 ... of 10.1% during the forecast period. Browse ...
Breaking Biology Technology: