Navigation Links
Detection, analysis of 'cell dust' may allow diagnosis, monitoring of brain cancer
Date:11/11/2012

A novel miniature diagnostic platform using nuclear magnetic resonance (NMR) technology is capable of detecting minuscule cell particles known as microvesicles in a drop of blood. Microvesicles shed by cancer cells are even more numerous than those released by normal cells, so detecting them could prove a simple means for diagnosing cancer. In a study published in Nature Medicine, investigators at the Massachusetts General Hospital (MGH) Center for Systems Biology (CSB) demonstrate that microvesicles shed by brain cancer cells can be reliably detected in human blood through a combination of nanotechnology and their new NMR-based device.

"About 30 or 40 years ago, people noticed something in the bloodstream that they initially thought was some kind of debris or 'cell dust',"explains Hakho Lee, PhD, of the CSB, and co-senior author of the study with Ralph Weissleder, MD, PhD, director of the CSB. "But it has recently become apparent that these vesicles shed by cells actually harbor the same biomarkers as their parent cells."

Circulating tumor cells (CTCs) have been regarded as a potential key to improved cancer diagnosis, but Lee explains, "The problem with CTCs is that they are extremely rare, so finding them in the blood is like trying to find a needle in a haystack." Microvesicles on the other hand are abundant in the circulation and, unlike CTCs, are small enough to cross the blood/brain barrier, which means that they could be used to detect and monitor brain cancers, he adds.

Glioblastoma multiforme (GBM) is the most common and most aggressive brain cancer in humans. By the time it is diagnosed, patients typically have less than 15 months to live. One of the biggest challenges with this condition is accurate disease monitoring to establish whether patients are responding to treatment. Currently, the only way to diagnose and monitor GBM is with biopsies and imaging tests, making long-term treatment monitoring difficult, invasive and impractical. To address this need, the CSB team sought to develop a simple blood test that could be used to easily monitor disease progression.

"The issue with microvesicles, however, is that they are very small, so there are not many technologies out there that can detect and molecularly profile them," explains Lee. "That is where our new technology comes in." By using nanotechnology to magnetically label microvesicles, and by adapting and improving equipment they developed last year to detect cancer cells with a miniature, hand-held NMR, the MGH researchers were able to reliably detect the tumor microvesicles in blood samples from mice bearing human GBM tumors and eventually in samples from human GBM patients.

Compared with other gold-standard techniques, this new technology demonstrated excellent detection accuracy. However, unlike other methods which can be time-consuming and require much greater sample volumes as well as expertise to perform NMR detection is quick and simple, potentially providing almost instant results from a small blood sample right in a doctor's office, the authors note. The MGH CSB team is currently extending this platform to other types of cancer and to other diseases such as bacterial infection. A number of clinical studies are currently ongoing, and others are in the planning stages, with the goal of eventually commercializing the technology.

"These microvesicles were found to be remarkably reliable biomarkers," confirms Weissleder. "They are very stable and abundant and appear to be extremely sensitive to treatment effects. In both animals and human patients, we were able to monitor how the number of cancer-related microvesicles in the bloodstream changed with treatment," explains Weissleder. "Even before an appreciable change in tumor size could be seen with imaging, we saw fewer microvesicles. It's like they are a harbinger of treatment response." Weissleder is a professor of Radiology and Lee an assistant professor at Harvard Medical School.


'/>"/>

Contact: Sue McGreevey
smcgreevey@partners.org
617-724-2764
Massachusetts General Hospital
Source:Eurekalert  

Related biology news :

1. Ingenuity Variant Analysis Sees Exponential Customer Adoption
2. Whitehead scientists identify major flaw in standard approach to global gene expression analysis
3. DNA analysis aids in classifying single-celled algae
4. International Life Sciences Conferences Address Advancements in High-Content Analysis, Sample Preparation, Clinical Trial Supply and Protein and Antibody Engineering
5. BGI Tech develops whole exome sequencing analysis of FFPE DNA samples to boost biomedicine
6. Study provides first-time analysis of 3 distinct contributions of forage fish worldwide
7. ShanghaiBio Corporation Partners with Ingenuity Systems to Address Challenges in Analysis and Interpretation of Genomics Data
8. New method provides fast, accurate, low cost analysis of BRCA gene mutations in breast cancer
9. Wayne State researchers working to improve genetic analysis, disorder detection
10. NCEAS DataONE streamlines search and analysis of massive amounts of ecological data
11. Screening horticultural imports: New models assess plant risk through better analysis
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Detection, analysis of 'cell dust' may allow diagnosis, monitoring of brain cancer
(Date:11/12/2019)... ... November 12, 2019 , ... The Arnold and Mabel ... and research institutions for its Instrumentation Grant for Advanced Light-Sheet Microscopy and ... per site for the acquisition of instrumentation, development and maintenance; support for data ...
(Date:11/11/2019)... ... November 11, 2019 , ... MicroGenDX, ... played a key role in the award-winning study “Next Generation Sequencing for the ... The molecular diagnostic laboratory processed samples using Next Generation DNA Sequencing to examine ...
(Date:11/9/2019)... ... November 08, 2019 , ... ... the leading provider of specialized histology, pathology, biomarker development, and archiving services ... created by the mergers of Histo-Scientific Research Laboratories (HSRL), Vet Path Services ...
Breaking Biology News(10 mins):
(Date:11/5/2019)... TORONTO (PRWEB) , ... November 05, 2019 , ... ... cancer technology, announced it has received CE Mark for its Fusion Bx 2.0 ... semi-robotic arm and user-friendly interface, the Fusion Bx 2.0 will give urologists across ...
(Date:11/2/2019)... ... October 31, 2019 , ... Join Patrick Raber, PhD, Manager, ... webinar on Friday, November 15, 2019 at 1pm EST to learn about ... profiling T-cell receptors (TCRs) and B-cell receptors (BCRs), has been widely utilized to ...
(Date:10/30/2019)... , ... October 30, 2019 , ... ... to showcase the many roles innovation and technology play in educating the next ... Innovation, featured hands-on learning opportunities and presentations by WesternU administrators and representatives of ...
(Date:10/29/2019)... ... October 29, 2019 , ... Researchers at ... Silios CMS-C multispectral imagers , researchers identified people by the image of ... on retinal imaging, face recognition, fingerprints and vasculature. , The new CMS4 ...
Breaking Biology Technology: