Navigation Links
Colon cancer researchers target stem cells, discover viable new therapeutic path
Date:12/1/2013

(TORONTO, Canada Dec. 1, 2013) - Scientists and surgeons at Princess Margaret Cancer Centre have discovered a promising new approach to treating colorectal cancer by disarming the gene that drives self-renewal in stem cells that are the root cause of disease, resistance to treatment and relapse. Colorectal cancer is the third leading cause of cancer-related death in the Western world.

"This is the first step toward clinically applying the principles of cancer stem cell biology to control cancer growth and advance the development of durable cures," says principal investigator Dr. John Dick about the findings published online today in Nature Medicine.

He talks about the research in this video - click the link to watch: https://www.youtube.com/watch?v=QK7JquljkBc.

Dr. Dick pioneered the cancer stem cell field by first identifying leukemia stem cells (1994) and colon cancer stem cells (2007). He is also renowned for isolating a human blood stem cell in its purest form as a single stem cell capable of regenerating the entire blood system paving the way for clinical use (2011). Dr. Dick holds a Canada Research Chair in Stem Cell Biology and is a Senior Scientist at University Health Network's Princess Margaret Cancer Centre and McEwen Centre for Regenerative Medicine. He is also a Professor in the Department of Molecular Genetics, University of Toronto, and Director of the Cancer Stem Cell Program at the Ontario Institute for Cancer Research.

In pre-clinical experiments, the research team replicated human colon cancer in mice to determine if specifically targeting the stem cells was clinically relevant. First, the researchers identified that the gene BMI-1, already implicated in maintaining stem cells in other cancers, is the pivotal regulator of colon cancer stem cells and drives the cycle of self-renewal, proliferation and cell survival. Next, the team used an existing small-molecule inhibitor to successfully block BMI-1, thus demonstrating the clinical relevance of this approach.

Lead author Dr. Antonija Kreso writes: "Inhibiting a recognized regulator of self-renewal is an effective approach to control tumor growth, providing strong evidence for the clinical relevance of self-renewal as a biological process for therapeutic targeting."

Dr. Dick explains: "When we blocked the BMI-1 pathway, the stem cells were unable to self-renew, which resulted in long-term and irreversible impairment of tumour growth. In other words, the cancer was permanently shut down."

Surgeon-scientist Dr. Catherine O'Brien, senior co-author of the study says: "The clinical potential of this research is exciting because it maps a viable way to develop targeted treatment for colon cancer patients. It is already known that about 65% have the BMI-1 biomarker. With the target identified, and a proven way to tackle it, this knowledge could readily translate into first-in-human trials to provide more personalized cancer medicine."


'/>"/>

Contact: Jane Finlayson
jane.finlayson@uhn.ca
416-946-2846
University Health Network
Source:Eurekalert  

Related biology news :

1. Hardworking sisters enable insect colonies to thrive
2. Colon cancer screening guidelines may miss 10 percent of colon cancers
3. Research shows how aspirin may act on blood platelets to improve survival in colon cancer patients
4. Scientists learn how soy foods protect against colon cancer
5. New 3-D colonoscopy eases detection of precancerous lesions
6. Scientists discover thriving colonies of microbes in ocean plastisphere
7. University of Tennessee professor links massive prehistoric bird extinction to human colonization
8. Researchers id queens, mysterious disease syndrome as key factors in bee colony deaths
9. Cleveland Clinic develops clinical screening program for no.1 genetic cause of colon cancer
10. Two-faced cells discovered in colon cancer
11. E. coli adapts to colonize plants
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Colon cancer researchers target stem cells, discover viable new therapeutic path
(Date:3/15/2016)... 15, 2016 --> ... Transparency Market Research "Digital Door Lock Systems Market - Global ... 2023," the global digital door lock systems market in terms ... and is forecast to grow at a CAGR of 31.8% ... and medium enterprises (MSMEs) across the world and high industrial ...
(Date:3/14/2016)... , March 14, 2016 NXTD ... growing mobile commerce market, announces the airing of a new ... starting the week of March 21 st .  The commercials ... including its popular Squawk on the Street show. --> ... on the growing mobile commerce market, announces the airing of ...
(Date:3/11/2016)... http://www.apimages.com ) - --> http://www.apimages.com ) - ... Images ( http://www.apimages.com ) - Germany . ... new refugee identity cards. DERMALOG will be unveiling this device, and ... Hanover next week.   --> Germany ... the new refugee identity cards. DERMALOG will be unveiling this device, ...
Breaking Biology News(10 mins):
(Date:4/28/2016)... 2016 Q BioMed Inc. ... CEO  was featured in an article he wrote ... Fear To Tread: http://www.lifescienceleader.com/doc/accelerators-enter-when-vcs-fear-to-tread-0001 ... is an essential business journal for life science ... to Big Pharmas. Their content is designed to ...
(Date:4/27/2016)... ... April 27, 2016 , ... Cambridge Semantics, the leading provider ... announced that it has been named to The Silicon Review’s “20 Fastest Growing Big ... markets, Cambridge Semantics serves the needs of end users facing some of the most ...
(Date:4/27/2016)... and RESEARCH TRIANGLE PARK, N.C. ... (NASDAQ: UTHR ) announced today that ... of United Therapeutics will provide an overview and update ... st Annual Health Care Conference. The ... at 10:00 a.m. Eastern Time, and can be accessed ...
(Date:4/27/2016)... ... ... Global Stem Cells Group CEO Benito Novas announced that Duncan ... affiliate Kimera Labs in Miami. , In 2004, Ross received his Ph.D. in Immunology ... disorders and the suppression of graft vs. host disease (GVHD) under UM Professor Robert ...
Breaking Biology Technology: