Navigation Links
Climate change goes underground
Date:8/22/2007

MADISON, WI, AUGUST 22, 2007- Climate change, a recent hot topic when studying the atmosphere, oceans, and Earths surface; however, the study of another important factor to this global phenomenon is still very much underground. Few scientists are looking deep enough to see the possible effects of climate change on groundwater systems. Little is known about how soil, subsurface waters, and groundwater are responding to climate change.

Scientists with CSIRO Australia and USDAs Agricultural Research Service (ARS) have addressed the vital need for the prediction of climate change impacts on water below the ground. They report that the only way to make such predictions is with simulated interactions between soils and plants that are essential in determining sensitivities of soil-water-vegetation systems to climate change. In their recent research, they generated daily weather patterns that match historical records and predicted climates with double the carbon dioxide using a General Circulation Model (GCM) of the atmosphere. The daily weather that resulted was entered into a soil-water-vegetation model that represented soil absorbed water, water flow, and storage in soil, surface evaporation, plant uptake, transpiration of water, and deep drainage below the roots of trees and grasses that becomes groundwater recharge.

Results of this research are published in the August 2007 Vadose Zone Journal in a special section titled, Groundwater Resources Assessment under the Pressures of Humanity and Climate Change. The eight-articles in this special section are available as open-access for a limited time. This special section was edited by Timothy Green (USDA-ARS), Makoto Taniguchi (Research Institute for Humanity and Nature, Japan), and Henk Kooi (Vrije University, The Netherlands) includes studies of several locations around the world, including regions of Africa, Asia, Australia, Micronesia, North America, and Europe.

The simulation models showed that changes in the temperatures and rainfall affected growth rates and leaf size of plants which impacts groundwater recharge. In some areas, the vegetation response to climate change would cause the average recharge to decrease, but in other areas, recharge to groundwater would more than double.

According to the authors, the outcome of this research is vital to land and water management agencies and policy makers all over the world. When the likely scenario of the Earths atmosphere doubling its concentration of carbon dioxide becomes a reality, this study indicates that groundwater recharge may increase dramatically in some areas as the changes in rainfall are amplified by the soil-water-plant systems that control groundwater recharge. Regardless of whether such a response is viewed as a benefit or liability, the potential magnitude of change presents strong motivation to gain knowledge of these systems and improve our predictions and responses.

In many countries, the groundwater reservoirs contribute a large part of the total water supply. It is especially true for Denmark, where 99% of the water supply depends on groundwater. This is why Scientists at the University of Copenhagen and the Geological Survey of Denmark and Greenland (GEUS) investigated the effects of future climate change on groundwater recharge, storage, and discharge to streams for two geologically and climatologically different regions in Denmark in a study funded by the Danish Environmental Protection Agency. These results are also published in the special section of Vadose Zone Journal.

The climate data used in this study was gathered from regional climate simulations for two scenarios of the Intergovernmental Panel on Climate Change for the period of 2071-2100. Average annual precipitation, temperature, and loss of water in the soil increased, but clear seasonal variations occurred. A model was used to simulate the altered water system that resulted from changes in weather conditions. As most groundwater systems react slowly to changes that occur on the earths surface, the main focus of this study was the average monthly values for a 15-year period.

The magnitude of the water response to the simulated climate change was highly dependant on the geological setting. In the study area characterized by sandy top soils and large, interconnected aquifers, the groundwater levels rose significantly. For the other study, with low-permeable top soils and thick clay layers, the groundwater levels only showed minor changes. The primary effect in this area was the change in river discharge with up to 50% increase in winter and 50% decrease in summer. Research is ongoing at the University of Copenhagen and GEUS to investigate other combined impacts of changes in climate, land use, irrigation demand, and sea-level on water resources.

According to the guest editors, resource management and government policies will need to be assessed based on both surface and underground climate impacts altered by human activity. According to Timothy Green, one of the guest editors, the simulations in these studies help to explain the complex interactions between climate on plants and soils. For full adaptation as part of the Earths water security discussions, he recommends that underground climate change needs to surface as a full-fledged part of the global system.


'/>"/>
Contact: Sara Uttech
suttech@soils.org
608-268-4948
Soil Science Society of America
Source:Eurekalert

Related biology news :

1. Scientists find fossil proof of Egypts ancient climate
2. Small species back-up giant marsupial climate change extinction claim
3. Africa to take it on chin again with climate change
4. Ocean climate predicts elk population in Canadian Rockies
5. Deep sea algae connect ancient climate, carbon dioxide and vegetation
6. Climate model links higher temperatures to prehistoric extinction
7. Climate experts search for answers in the oceans
8. York scientists warn of dramatic impact of climate change on Africa
9. New markers of climate change
10. Disappearing arctic lakes linked to climate change
11. Field tested: Grasslands wont help buffer climate change as carbon dioxide levels rise
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/26/2016)... 2016 Research and Markets has ... Market 2016-2020"  report to their offering.  , ,     ... The analysts forecast the global multimodal biometrics market ... the period 2016-2020.  Multimodal biometrics is ... as the healthcare, BFSI, transportation, automotive, and government ...
(Date:4/13/2016)... -- IMPOWER physicians supporting Medicaid patients in Central ... in telehealth thanks to a new partnership with higi. ... patients can routinely track key health measurements, such as ... when they opt in, share them with IMPOWER clinicians ... retail location at no cost. By leveraging this data, ...
(Date:3/22/2016)... March 22, 2016 ... Sensors Market for Consumer Industry by Type (Image, ... Application (Communication & IT, Entertainment, Home Appliances, ... Forecast to 2022", published by MarketsandMarkets, the ... to reach USD 26.76 Billion by 2022, ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... ... June 23, 2016 , ... ... announce the launch of their brand, UP4™ Probiotics, into Target stores nationwide. The ... is proud to add Target to its list of well-respected retailers. This list ...
(Date:6/23/2016)... - FACIT has announced the creation of a ... Propellon Therapeutics Inc. ("Propellon" or "the Company"), to ... of first-in-class WDR5 inhibitors for the treatment of ... an exciting class of therapies, possessing the potential ... patients. Substantial advances have been achieved with the ...
(Date:6/23/2016)... 23, 2016 Houston Methodist Willowbrook Hospital ... Sports Association to serve as their official health ... Methodist Willowbrook will provide sponsorship support, athletic training ... association coaches, volunteers, athletes and families. ... Sports Association and to bring Houston Methodist quality ...
(Date:6/23/2016)... , June 23, 2016  The Prostate Cancer Foundation (PCF) ... precise treatments and faster cures for prostate cancer. Members of the Class of ... 15 countries. Read More About the Class of 2016 ... ... ...
Breaking Biology Technology: