Navigation Links
Cleverly designed vaccine blocks H5 avian influenza in models

WASHINGTON, DC March 25, 2013 Until now most experimental vaccines against the highly lethal H5N1 avian influenza virus have lacked effectiveness. But a new vaccine has proven highly effective against the virus when tested in both mice and ferrets. It is also effective against the H9 subtype of avian influenza. The research is published online ahead of print in the Journal of Virology.

The strength of the new vaccine is that it uses attenuated, rather than "killed" virus. (Killed viruses are broken apart with chemicals or heat, and they are used because they are safer than attenuated viruses.) Killed virus vaccines against avian influenza are injected into the bloodstream, whereas this vaccine is given via nasal spray, thus mimicking the natural infection process, stimulating a stronger immune response.

The danger of current attenuated virus vaccines is that they might exchange dangerous genetic material with garden variety influenza viruses of the sort that strike annually, potentially rendering a lethal but very hard to transmit influenza virus, such as H5, easily transmissible among humans. To mitigate those dangers, the study authors, led by Daniel Perez of the University of Maryland, came up with an ingenious design. Influenza viruses carry their genetic material in eight "segments," explains coauthor and University of Maryland colleague Troy Sutton. When viruses reassort, they exchange segments. But each segment is unique, all eight are needed, and the viruses are unfit if they contain more than eight segments.

The vaccine is based on an attenuated version of the H9 virus, with an H5 gene added into one of the H9 virus' segments, to confer immunity to the H5 virus. Segment 8, which is composed of the so-called NS1 and NS2 genes, was split apart, and the NS2 gene was moved into segment 2, adjacent to the polymerase gene, which copies the virus' genetic material during replication. Placing NS2 next to the polymerase gene slowed its function, interfering with the virus' replication. That makes the vaccine safer.

The next step was to engineer the H5 gene into the vaccine. It was inserted into segment 8, where the NS2 gene had been.

Another aspect of the new vaccine's design makes it safer still, by rendering successful reassortment less likely. Both NS1 and NS2 are needed for viral replication. Since the two genes are now separated into different segments, any reassortment will have to include both segments, instead of just segment 8, in order for a reassortant virus to be viable. This greatly reduced the probability of successful reassortment.

The World Health Organization (WHO) recognizes avian influenza subtypes H5, H7, and H9 as potential pandemic viruses, because they all have in rare instances infected humans, and because they circulate in wild birds. Single reassortants could be sufficient to breach the species barrier, and since they do not circulate among us, we lack any immunity. Moreover, H5 is unusually lethal, having killed roughly half of those few it is confirmed to have infected.


Contact: Garth Hogan
American Society for Microbiology

Related biology news :

1. A new type of data papers designed to publish online interactive keys identifying biodiversity
2. Faster, cheaper gas and liquid separation using custom designed and built mesoscopic structures
3. MIT-designed cooler preserves tuberculosis drugs, records doses
4. Portable diagnostics designed to be shaken, not stirred
5. Research is ensuring stormwater systems are designed for the future
6. HPV vaccine trends point to failures in patient education, vaccine programs
7. Cancer vaccines self-sabotage, channel immune attack to injection site
8. Human trials for Streptococcus A vaccine
9. Novel aptamer boosts T cell-based immune response to therapeutic vaccines
10. Designer bacteria may lead to better vaccines
11. UMMS experts seek better flu vaccines
Post Your Comments:
(Date:5/6/2017)... 2017 RAM Group , Singaporean ... breakthrough in biometric authentication based on a ... to perform biometric authentication. These new sensors are based ... by Ram Group and its partners. This sensor will ... chains and security. Ram Group is a next ...
(Date:4/17/2017)... -- NXT-ID, Inc. (NASDAQ: NXTD ) ("NXT-ID" or ... 2016 Annual Report on Form 10-K on Thursday April 13, 2017 ... ... Investor Relations section of the Company,s website at  under ... . 2016 Year Highlights: ...
(Date:4/11/2017)... Research and Markets has announced the addition of the ... ... to grow at a CAGR of 30.37% during the period 2017-2021. ... been prepared based on an in-depth market analysis with inputs from ... prospects over the coming years. The report also includes a discussion ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... INDIANAPOLIS , Oct. 11, 2017  VMS BioMarketing, a ... of a nationwide oncology Clinical Nurse Educator (CNE) network, which ... growing need for communication among health care professionals to enhance ... physicians, nurses, office staff, and other health care professionals to ... for breast cancer. ...
(Date:10/11/2017)... ... 2017 , ... A new study published in Fertility and ... in vitro fertilization (IVF) transfer cycles. The multi-center matched cohort study ... comparing the results from the fresh and frozen transfer cohorts, the authors of ...
(Date:10/10/2017)... ... October 10, 2017 , ... ... antibody-drug conjugate (ADC) therapeutics, today confirmed licensing rights that give it exclusive ... a technology developed in collaboration with Children’s Hospital Los Angeles (CHLA). ...
(Date:10/10/2017)... 10, 2017 International research firm Parks Associates announced ... at the TMA 2017 Annual Meeting , October 11 in ... residential home security market and how smart safety and security products impact ... Parks Associates: Smart Home ... "The residential security market has ...
Breaking Biology Technology: