Navigation Links
Changing the conversation -- polymers disrupt bacterial communication
Date:11/11/2013

Artificial materials based on simple synthetic polymers can disrupt the way in which bacteria communicate with each other, a study led by scientists at The University of Nottingham has shown.

The findings, published in the journal Nature Chemistry, could further our knowledge on how better to control and exploit bacteria in the future and will have implications for work in the emerging field of synthetic biology.

Professor Cameron Alexander, in the University's School of Pharmacy, led the study. He said: "This is an exciting and unexpected finding for us and comes as a result of research which was very much curiosity driven.

"It gives us more information about how to design artificial cells and to produce materials that will interact with microorganisms and control their behaviour, with a whole host of potential applications including drug discovery and energy production."

The study, which also involved scientists from the universities of Birmingham and Newcastle, was funded by the Engineering and Physical Sciences Research Council (EPSRC), the Biotechnology and Biological Sciences Research Council (BBSRC) and The University of Nottingham.

As part of their research into the development of artificial cells and programmable bacterial coatings, the team found that polymers long-chain molecules that were able to arrange bacteria into clustered communities were, surprisingly, encouraging these bacteria to actively 'talk' to each other. This communication occurred by quorum sensing (QS), a way in which bacteria signal to each other, and coordinate response to environment. Quorum sensing also controls the way in which bacteria release certain types of molecules for example as a defence mechanism or as tools for infection.

This finding opens up the possibility to influence microbial behaviour by controlling their ability to form productive communities. This can be exploited to prevent the release of toxins during the spread of infection or, alternatively, the production of useful molecules which can act as drugs, food source or biofuels.

The researchers used the bioluminescent marine bacterium Vibrio harveyi, as it allows them to easily track the changes in the bacteria's behaviour by measuring the pattern and intensity of the natural light produced by the organism.

Building on some intriguing initial results, the team of pharmacists, microbiologists chemists and computer scientists were also able to produce computational models predicting and explaining the behaviour of the microbial communities, which were crucial to deduct simple design principles for the programmable interaction of bacteria and polymers.

Overall, this research offers new understanding of bacterial community behaviour and will have implications in the design of materials as antimicrobials, for bioprocessing, biocomputation and, more generally, synthetic biology.


'/>"/>

Contact: Emma Thorne
emma.thorne@nottingham.ac.uk
44-011-595-15793
University of Nottingham
Source:Eurekalert

Related biology news :

1. Costs for changing pollution criteria in Florida waters likely to exceed EPA estimates
2. Beating famine: Sustainable food security through land regeneration in a changing climate
3. Athletic frogs have faster-changing genomes
4. 50 years of bird poop links DDT with changing bird menus
5. University of Minnesota startup offers game-changing energy solutions that reduce CO2 emissions
6. Nitrogen pollution changing Rocky Mountain National Park vegetation, says CU-Boulder-led study
7. Deadly liver cancer may be triggered by cells changing identity, UCSF study shows
8. Back to the future: A new science for a changing planet
9. Satellite images tell tales of changing biodiversity
10. Did the changing climate shrink Europes ancient hippos?
11. Changing climate, not tourism, seems to be driving decline in chinstrap-penguin populations
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/30/2017)... -- Trends, opportunities and forecast in this market to ... AFIS, iris recognition, facial recognition, hand geometry, vein recognition, ... industry (government and law enforcement, commercial and retail, health ... and by region ( North America , ... , and the Rest of the World) ...
(Date:3/24/2017)... 2017 The Controller General of Immigration from Maldives ... Algeen have received the prestigious international IAIR Award for the most ... Reading ... Maldives ... Abdulla Algeen (small picture on the right) have received the IAIR award ...
(Date:3/22/2017)... 21, 2017   Neurotechnology , a provider ... today announced the release of the SentiVeillance ... improved facial recognition using up to 10 surveillance, ... computer. The new version uses deep neural-network-based facial ... it utilizes a Graphing Processing Unit (GPU) for ...
Breaking Biology News(10 mins):
(Date:5/24/2017)... -- As Ebola resurfaces in the Democratic Republic ... cases now reported, a new analysis of the Ebola gene ... between the 2014 and 2017 outbreaks of the disease.  ... which preceded the 2014 outbreak. An analysis of the latest ... in 2014-15, which again precedes the current outbreak in the ...
(Date:5/23/2017)... ... May 22, 2017 , ... ... row in the Aragon Research Globe™ for Corporate Learning, 2017. , Aragon Research ... and market demand, and effectively perform against those strategies. NetDimensions’ ranking as a ...
(Date:5/23/2017)... ... , ... Bacterial biofilms, surface adherent communities of bacteria that are encased in ... poisoning and catheter infections to gum disease and the rejection of medical implants. ... per year, there is currently a paucity of means for preventing their formation or ...
(Date:5/22/2017)... Pittsburgh, PA (PRWEB) , ... May 22, 2017 ... ... Inc. announced today that it is exhibiting in booth B2 at the Association ... in Pittsburgh, May 22-25. , In addition to demonstrating its Cancer Diagnostic ...
Breaking Biology Technology: