Navigation Links
Carnegie Mellon scientists develop nanogels that enable controlled delivery of carbohydrate drugs
Date:8/20/2007

PITTSBURGHCarnegie Mellon University scientists have developed tiny, spherical nanogels that uniformly release encapsulated carbohydrate-based drugs. The scientists created the nanogels using atom transfer radical polymerization (ATRP), which will ultimately enable the nanogels to deliver more drug directly to the target and to dispense the drug in a time-release manner.

The nanogels only 200 nanometers in diameter possess many unique properties that make them ideal drug-delivery tools, according to Daniel Siegwart, a graduate student in University Professor Krzysztof Matyjaszewskis laboratory at Carnegie Mellon. Siegwart will present his research Monday, Aug. 20 at the 234th national meeting of the American Chemical Society in Boston.

ATRP, a controlled living radical polymerization process, allows chemists to precisely regulate the composition and architecture of the polymers they are creating. Siegwart and colleagues used ATRP in inverse miniemulsion to make nanogels with a uniform network of cross-linked polymer chains within a spherical nanoparticle.

A uniform mesh size within the nanogels should improve the controlled release of the encapsulated drugs, said Siegwart. The major advance of this system is that ATRP allows one to prepare nanogels that are uniform in diameter. The size of the particles can be tuned, and we are currently investigating how nanogels of different sizes enter cells. The results may allow us to better understand the mechanism of endocytosis and to target specific tissues, such as cancer cells that have a more permeable membrane.

In their most recent advance, the Carnegie Mellon team incorporated the model carbohydrate drug rhodamine isothiocyanate-labeled dextran into the nanogels uniform mesh core. When the nanogels degraded, the model carbohydrate drug was released over time. The experiments were carried out with Jung Kwon Oh, a former postdoctoral associate in the Matyjaszewski lab who developed ATRP in inverse miniemulsion.

The new nanogels, which are nontoxic and biodegradable, can also accommodate molecules on their surfaces. During nanogel synthesis, the ATRP process allows scientists to incorporate targeting groups on the nanogel surface that can interact with specific receptors, such as those on the surface of a cancer cell. In addition, the nanogels can escape the notice of the bodys immune system, thus prolonging circulation time within the bloodstream.

The basic composition of the nanogels is based on an analogue of poly(ethylene oxide), a well-established biocompatible polymer that can enhance blood circulation time and prevent clearance by the reticuloendothelial system, the part of the immune system that engulfs and removes foreign objects from the body, said Siegwart.

In a recent article published in the Journal of the American Chemical Society, the Carnegie Mellon team demonstrated that its novel nanogels could be used to encapsulate doxorubicin, an anticancer drug. When the scientists mixed the doxorubicin-loaded nanogels with HeLa cancer cells in the laboratory, the doxorubicin was released, penetrating the cancer cells and significantly inhibiting their growth. They carried out this work in collaboration with Jeffrey Hollinger, professor of biomedical engineering and biological sciences and director of the Bone Tissue Engineering Center at Carnegie Mellon.


'/>"/>

Contact: Amy Pavlak
apavlak@andrew.cmu.edu
412-268-8619
Carnegie Mellon University
Source:Eurekalert

Related biology news :

1. Carnegie Mellon scientists develop tool that uses MRI to visualize gene expression in living animals
2. Robot-based system developed at Carnegie Mellon detects life in Chiles Atacama desert
3. Green catalyst destroys pesticides and munitions toxins, finds Carnegie Mellon University
4. Carnegie Mellon University research reveals how cells process large genes
5. Carnegie Mellon cyLab researchers work to develop new red tide monitoring
6. Team led by Carnegie Mellon University scientist finds first evidence of a living memory trace
7. Carnegie Mellon scientists create PNA molecule with potential to build nanodevices
8. Carnegie Mellon U. transforms DNA microarrays with standard Internet communications tool
9. Carnegie Mellon develops non-invasive technique to detect transplant rejection at cellular level
10. Carnegie Mellon scientists show brain uses optimal code for sound
11. DNA conclusive yet still controversial, Carnegie Mellon professor says
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/7/2017)... , March 7, 2017   HireVue , the ... global companies identify the best talent, faster, today announced ... Sales Officer (CSO) and Diana Kucer as ... out a seasoned executive team poised to drive continued growth ... on a year of record bookings in 2017. ...
(Date:3/2/2017)... 2, 2017 Australian stem cell and regenerative ... has signed an agreement with the Monash Lung Biology ... Discovery Institute and Department of Pharmacology at Monash University, ... preclinical study to support the use of Cymerus™ mesenchymal ... Asthma is a chronic, long term lung ...
(Date:2/27/2017)... , Feb. 27, 2017   Strategic Cyber Ventures ... it has led a $3.5 million investment in  Polarity ... Strategic Cyber Ventures is DC based and is led ... Hank Thomas . Ron Gula , also a ... also participated in this series A round of funding. ...
Breaking Biology News(10 mins):
(Date:3/22/2017)... , March 22, 2017   iSpecimen ®, ... announced that Doctors Pathology Service (DPS), a ... of the United States , has ... Delaware Health Information Network (DHIN) to make human ... The novel program, announced in 2015 as ...
(Date:3/22/2017)... March 22, 2017   VWR ... of product and service solutions to laboratory ... has acquired EPL Archives, Inc., an international ... the entire regulated product research, development and ... storage and ancillary services. EPL Archives is ...
(Date:3/22/2017)... ... March 21, 2017 , ... ... more than tripling its goal and raising over $30,000 in the first 40 ... grows nutritious veggies & herbs fast, easy, and affordably, anywhere. , “Simply add ...
(Date:3/22/2017)... Iowa (PRWEB) , ... March 22, 2017 , ... March ... is time for another green revolution, one that utilizes technological innovation in smart, sustainable ... tangible aspects of life such as aesthetics and environmental stability. This paper is the ...
Breaking Biology Technology: