Navigation Links
CRISPR critters: Scientists identify key enzyme in microbial immune system
Date:9/9/2010

Imagine a war in which you are vastly outnumbered by an enemy that is utterly relentless attacking you is all it does. The intro to another Terminator movie? No, just another day for microbes such as bacteria and archaea, which face a never-ending onslaught from viruses and invading strands of nucleic acid known as plasmids. To survive this onslaught, microbes deploy a variety of defense mechanisms, including an adaptive-type nucleic acid-based immune system that revolves around a genetic element known as CRISPR, which stands for Clustered Regularly Interspaced Short Palindromic Repeats.

Through the combination of CRISPR and squads of CRISPR-associated - "Cas" - proteins, microbes are able to utilize small customized RNA molecules to silence critical portions of an invader's genetic message and acquire immunity from similar invasions in the future. To better understand how this microbial immune system works, scientists have needed to know more about how CRISPR's customized small RNA molecules get produced. Answers have now been provided by a team of researchers with the Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley.

In a study led by biochemist Jennifer Doudna, the research team used protein crystallography beamlines at Berkeley Lab's Advanced Light Source to produce an atomic-scale crystal structure model of an endoribonuclease called "Csy4." Doudna and her colleagues have identified Csy4 as the enzyme in prokaryotes that initiates the production of CRISPR-derived RNAs (crRNAs), the small RNA molecules that target and silence invading viruses and plasmids.

"Our model reveals that Csy4 and related endoribonucleases from the same CRISPR/Cas subfamily utilize an exquisite recognition mechanism to discriminate crRNAs from other cellular RNAs to ensure the selective production of crRNA for acquired immunity in bacteria," Doudna says. "We also found functional similarities between the RNA recognition mechanisms in Cys4 and Dicer, the enzyme that plays a critical role in eukaryotic RNA interference."

Doudna is a leading authority on RNA molecular structures who holds joint appointments with Berkeley Lab's Physical Biosciences Division and UC Berkeley's Department of Molecular and Cell Biology and Department of Chemistry. She is also an investigator with the Howard Hughes Medical Institute (HHMI). The results of this latest research on CRISPR are reported in the journal Science in a paper titled "Sequence- and structure-specific RNA processing by a CRISPR endonuclease." Co-authoring the paper with Doudna were Rachel Haurwitz, Martin Jinek, Blake Wiedenheft and Kaihong Zhou.

CRISPR is a unit of DNA, usually on a microbe's chromosome, made up of "repeat" elements, base-pair sequences ranging from 30 to 60 nucleotides in length, separated by "spacer" elements, variable sequences that are also from 30 to 60 nucleotides in length. CRISPR units are found in about 40-percent of all bacteria whose genomes have been sequenced, and about 90-percent of archaea. A microbe might have several CRISPR loci within its genome and each locus might contain between four and 100 CRISPR repeat-spacer units. Doudna and her colleagues studied CRISPR in Pseudomonas aeruginosa, a common bacterium that is ubiquitous in the environment.

Rachel Haurwitz, a graduate student in Doudna's research group and the first author on the Science paper, explains how the CRISPR/Cas immunity system works.

"When a bacterium recognizes that it has been invaded by a virus or a plasmid, it incorporates a small piece of the foreign DNA into one of its CRISPR units as a new spacer sequence. The CRISPR unit is then transcribed as a long RNA segment called the pre-crRNA. The Csy4 enzyme cleaves this pre-crRNA within each repeat element to create crRNAs about 60 nucleotides long that will contain sequences which match portions of the foreign DNA. Cas proteins will use these matching sequences to bind the crRNA to the invading virus or plasmid and silence it."

Haurwitz says the CRISPR/cas system for silencing foreign DNA in prokaryotes is analogous to the way in which short interfering or siRNAs correct genetic problems in eukaryotes. Over time, the CRISPR/cas system will build up inheritable DNA-encoded immunity from future invasions by the same types of viruses and plasmids.

With their crystal structure model of the Csy4 enzyme bound to its cognate RNA, which features a resolution of 1.8 Angstroms, the Berkeley CRISPR research team has shown that Csy4 makes sequence-specific interactions in the major groove of the CRISPR RNA repeat stem-loop. Together with electrostatic contacts to the phosphate backbone, these interactions enable Csy4 to selectively bind to and cleave pre-crRNAs using phylogenetically conserved residues of the amino acids serine and histidine in the active site.

"Our model explains sequence- and structure-specific processing by a large family of CRISPR-specific endoribonucleases," Doudna says.

Doudna and her colleagues produced their 1.8 Angstrom resolution crystallographic structure using the experimental end stations of Beamlines 8.2.1 and 8.3.1 at Berkeley Lab's Advanced Light Source (ALS). Both beamlines are powered by superconducting bending magnets "superbends" and both feature state-of-the-art multiple-wavelength anomalous diffraction (MAD) and macromolecular crystallography (MX) capabilities. Beamline 8.2.1 is part of the suite of protein crystallography beamlines that comprise the Berkeley Center for Structural Biology.

"The ALS and its protein crystallography beamlines continue to be a critical resource for our research, Doudna says.

The crRNAs used by the CRISPR/cas system for the targeted interference of foreign DNA join the growing ranks of small RNA molecules that mediate a variety of processes in both eukaryotes and prokaryotes. Understanding how these small RNA molecules work can improve our basic understanding of cell biology and provide important clues to the fundamental role of RNA in the evolution of life.

Says Doudna, "By investigating how bacteria produce and use small RNAs for selective gene targeting, we hope to gain insight into the fundamental features of the pathways that have proven evolutionarily useful for genetic control, both in the bacterial world and in the world of eukaryotes. Right now it looks like bacteria and eukaryotes have evolved entirely distinct pathways by which RNAs are used for gene regulation and that is pretty amazing!"


'/>"/>

Contact: Lynn Yarris
lcyarris@lbl.gov
510-486-5375
DOE/Lawrence Berkeley National Laboratory
Source:Eurekalert  

Related biology news :

1. Jefferson scientists deliver toxic genes to effectively kill pancreatic cancer cells
2. Scientists identify novel inhibitor of human microRNA
3. Argonne scientists peer into heart of compound that may detect chemical, biological weapons
4. MU scientists go green with gold, distribute environmentally friendly nanoparticles
5. Scientists identify gene that may contribute to improved rice yield
6. Scientists discover why a mothers high-fat diet contributes to obesity in her children
7. MU scientists see how HIV matures into an infection
8. Earth scientists keep an eye on Texas
9. Thinking it through: Scientists call for policy to guide biofuels industry toward sustainability
10. Scientists identify a molecule that coordinates the movement of cells
11. Scientists Find new migratory patterns for Mediterranean and Western Atlantic bluefin tuna
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
CRISPR critters: Scientists identify key enzyme in microbial immune system
(Date:5/16/2016)... --  EyeLock LLC , a market leader of iris-based ... IoT Center of Excellence in Austin, Texas ... embedded iris biometric applications. EyeLock,s iris authentication ... with unmatched biometric accuracy, making it the most proven ... platform uses video technology to deliver a fast and ...
(Date:4/28/2016)... First quarter 2016:   , Revenues amounted to ... of 2015 The gross margin was 49% (27) ... operating margin was 40% (-13) Earnings per share rose ... was SEK 249.9 M (21.2) , Outlook   ... The operating margin for 2016 is estimated to exceed ...
(Date:4/15/2016)... 15, 2016 Research and ... Biometrics Market 2016-2020,"  report to their offering.  , ... , ,The global gait biometrics market is expected ... the period 2016-2020. Gait analysis generates ... be used to compute factors that are not ...
Breaking Biology News(10 mins):
(Date:6/24/2016)... ... 2016 , ... While the majority of commercial spectrophotometers and fluorometers use the ... models are higher end machines that use the more unconventional z-dimension of 20mm. ... the bottom of the cuvette holder. , FireflySci has developed several Agilent flow ...
(Date:6/23/2016)... , June 23, 2016 /PRNewswire/ - FACIT has ... Ontario biotechnology company, Propellon Therapeutics Inc. ... and commercialization of a portfolio of first-in-class WDR5 ... targets such as WDR5 represent an exciting class ... in precision medicine for cancer patients. Substantial advances ...
(Date:6/23/2016)... 2016  The Biodesign Challenge (BDC), a university competition ... harness living systems and biotechnology, announced its winning teams ... New York City . The ... projects at MoMA,s Celeste Bartos Theater during the daylong ... senior curator of architecture and design, and Suzanne ...
(Date:6/23/2016)... 2016 Apellis Pharmaceuticals, Inc. today announced ... of its complement C3 inhibitor, APL-2. The trials ... dose studies designed to assess the safety, tolerability, ... in healthy adult volunteers. Forty subjects ... single dose (ranging from 45 to 1,440mg) or ...
Breaking Biology Technology: