Navigation Links
Building better blood vessels could advance tissue engineering
Date:4/4/2013

ANN ARBOROne of the major obstacles to growing new organsreplacement hearts, lungs and kidneysis the difficulty researchers face in building blood vessels that keep the tissues alive, but new findings from the University of Michigan could help overcome this roadblock.

"It's not just enough to make a piece of tissue that functions like your desired target," said Andrew Putnam, U-M associate professor of biomedical engineering. "If you don't nourish it with blood by vascularizing it, it's only going to be as big as the head of a pen.

"But we need a heart that's this big," he added, holding up his fist.

More immediately, doctors and researchers believe figuring out how to grow working blood vessels might offer treatments for diseases that affect the circulatory system such as diabetes. Perhaps the right drug or injection could save patients' feet from amputation.

Putnam and his colleagues have revealed why one of the leading approaches to building blood vessels isn't consistently working: It's making leaky tubes. They also demonstrated how adult stem cells could solve this problem. A paper on the findings is published online in Tissue Engineering Part A, and will appear in a forthcoming print edition.

Today, biomedical researchers are taking two main approaches to growing new capillaries, the smallest blood vessels and those responsible for exchanging oxygen, carbon dioxide and nutrients between blood and muscles or organs.

One group of researchers is developing drug compounds that would signal existing vessels to branch into new tributaries. These compoundsgenerally protein growth factorsmimic how cancerous tumor cells recruit blood vessels.

The other group, which includes the U-M team, is using a cell-based method. This technique involves injecting cells within a scaffolding carrier near the spot where you want new capillaries to materialize. In Putnam's approach, they deliver endothelial cells, which make up the vessel lining and supporting cells. Their scaffolding carrier is fibrin, a protein in the human body that helps blood clot.

"The cells know what to do," Putnam said. "You can take these things and mix them and put them in an animal. Literally, it's as easy as a simple injection and over a few days, they spontaneously form new vessels and the animals' own vasculature connects to them."

But it turns out these vessels don't always thrive. The U-M team aimed to figure out why. In reading previously published findings, Putnam noticed that researchers used "a mishmash of support cells," and the field had paid little attention to which ones work best. So that's where he and his colleagues focused.

In their experiments, they mixed three recipes of blood vessel starter solutions, each with a different commonly used supporting cell type: lung fibroblasts, adult stem cells from fat and adult stem cells from bone marrow. They also made a version with no supporting cells at all. They injected each solution under the skin of mice, and allowed the new blood vessels to form over a period of two weeks. At various points in time, they injected a tracer dye into the animals' circulation to help them see how well the engineered capillaries held blood, and whether they were connected to the animals' existing vessel networks.

The researchers found that the solution with no support cells and the one with the lung fibroblasts produced immature, misshapen human capillaries that leaked. They could tell because the tracer dye pooled in the tissue around the new vessels. On the other hand, the solutions with both types of adult stem cells gave rise to robust human capillaries that kept blood and dye inside them.

The paper notes that one popular method biomedical engineers use to check the success of their effortscounting blood vesselsmight not be an ideal measure. The adult stem cell solutions produced fewer blood vessels than the others, in one case less than half. But the vessels they did build were stronger. And upon further analysis, the researchers found evidence that the adult stem cells may be able to differentiate into the kind of mature, smooth muscle cells that support larger blood vessels.

"The adult stem cells from fat and bone marrow both work equally well," Putnam said. "If we want to use this clinically in five to 10 years, I think it's crucial for the field to focus on a support cell that actually has some stem cell characteristics."

Down the road, Putnam envisions that doctors could get these support cells from individual patients themselveseither from their bone marrow or fatand then inject them near the site where the new blood vessels are needed.


'/>"/>

Contact: Nicole Casal Moore
ncmoore@umich.edu
734-647-7087
University of Michigan
Source:Eurekalert

Related biology news :

1. Building the European Unions Natura 2000 -- the largest ever network of protected areas
2. New study finds a protein combination is best to consume post-workout for building muscle
3. Light weights are just as good for building muscle, getting stronger, researchers find
4. CUNY Energy Institute battery system could reduce buildings electric bills
5. A cells first steps: Building a model to explain how cells grow
6. Stealing lifes building blocks
7. Blood-brain barrier building blocks forged from human stem cells
8. Building global collaboration for biodiversity intelligence
9. Mathematicians find solution to biological building block puzzle
10. Minimally invasive building renovation
11. Natural regeneration building urban forests, altering species composition
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/19/2016)... 2016 The new GEZE SecuLogic ... web-based "all-in-one" system solution for all door components. It ... the door interface with integration authorization management system, and ... The minimal dimensions of the access control and the ... installations offer considerable freedom of design with regard to ...
(Date:4/14/2016)... TEL AVIV, Israel , April 14, 2016 /PRNewswire/ ... in Behavioral Authentication and Malware Detection, today announced the ... has already assumed the new role. Goldwerger,s ... for BioCatch, on the heels of the deployment of ... In addition, BioCatch,s behavioral biometric technology, which discerns unique ...
(Date:3/31/2016)... , March 31, 2016  Genomics firm Nabsys has ... CEO, Barrett Bready , M.D., who returned to ... the original technical leadership team, including Chief Technology Officer, ... Product Development, Steve Nurnberg and Vice President of Software ... the company. Dr. Bready served as CEO ...
Breaking Biology News(10 mins):
(Date:5/27/2016)... ... ... PBI-Gordon Corporation is pleased to announce Dave Loecke has accepted the position ... PBI-Gordon, Dave has served in a wide variety of roles. His most recent position ... of many of PBI-Gordon’s most successful products. , “Dave has been essential to the ...
(Date:5/26/2016)... and READING, England , May ... http://www.indegene.com ), a leading global provider of clinical, ... and healthcare organisations and TranScrip ( http://www.transcrip-partners.com ), ... throughout the product lifecycle, today announced the extension ... IntraScience.      (Logo: http://photos.prnewswire.com/prnh/20141208/720248 ...
(Date:5/26/2016)... ... May 26, 2016 , ... FireflySci has been manufacturing quartz ... all over the globe. Their cute firefly logo has been spreading to more ... makes spectrophotometer calibration standards that never require recalibration. These revolutionary standards have ...
(Date:5/25/2016)... ... May 25, 2016 , ... ... issued by the Office of the National Coordinator for Health IT (ONC) outlining ... if clinically relevant data were available when and where it was needed. The ...
Breaking Biology Technology: