Navigation Links
Biofilms help Salmonella survive hostile conditions, Virginia Tech researchers say

Virginia Tech scientists have provided new evidence that biofilms bacteria that adhere to surfaces and build protective coatings are at work in the survival of the human pathogen Salmonella.

One out of every six Americans becomes ill from eating contaminated food each year, with over a million illnesses caused by Salmonella bacteria, according to the Centers for Disease Control and Prevention. Finding out what makes Salmonella resistant to antibacterial measures could help curb outbreaks.

Researchers affiliated with the Fralin Life Science Institute discovered that in addition to protecting Salmonella from heat-processing and sanitizers such as bleach, biofilms preserve the bacteria in extremely dry conditions, and again when the bacteria are subjected to normal digestive processes. The study is now online in the International Journal of Food Microbiology and will appear in the April issue.

"Biofilms are an increasing problem in food processing plants serving as a potential source of contamination," said Monica Ponder, an assistant professor of Food Science and Technology in the College of Agriculture and Life Sciences. "We have discovered that Salmonella in biofilms survive on dried foods much better than previously thought, and because of this are more likely to cause disease," Ponder said.

Outbreaks of Salmonella associated with dried foods such as nuts, cereals, spices, powdered milk and pet foods have been associated with over 900 illnesses in the last five years. These foods were previously thought to be safe because the dry nature of the product stops microbial growth.

"Most people expect to find Salmonella on raw meats but don't consider that it can survive on fruits, vegetables or dry products, which are not always cooked," Ponder said.

In moist conditions, Salmonella thrive and reproduce abundantly. If thrust into a dry environment, they cease to reproduce, but turn on genes which produce a biofilm, protecting them from the detrimental environment.

Researchers tested the resilience of the Salmonella biofilm by drying it and storing it in dry milk powder for up to 30 days. At various points it was tested in a simulated gastrointestinal system. Salmonella survived this long- term storage in large numbers but the biofilm Salmonella were more resilient than the free-floating cells treated to the same conditions.

The bacteria's stress response to the dry conditions also made it more likely to cause disease. Biofilms allowed the Salmonella to survive the harsh, acidic environment of the stomach, increasing its chances of reaching the intestines, where infection results in the symptoms associated with food poisoning.

This research may help shape Food and Drug Administration's regulations by highlighting the need for better sanitation and new strategies to reduce biofilm formation on equipment, thus hopefully decreasing the likelihood of another outbreak.


Contact: Lindsay Key
Virginia Tech

Related biology news :

1. LSUHSC scientist awarded nearly $2 million to determine role of biofilms in common fungal infection
2. Mechanisms involved in resistance to the bacteria Salmonella studied in a Ph.D. thesis
3. Assessing a new technique for ensuring fresh produce remains Salmonella-free
4. Salmonella infection, but not as we know it
5. UCSB researchers discover particularly dangerous Salmonella
6. UCSB researchers find a way to detect stealthy, hypervirulent Salmonella strains
7. UCI-led study uncovers how Salmonella avoids the bodys immune response
8. Cushion plants help other plants survive
9. Not just cars, but living organisms need antifreeze to survive
10. How do corals survive in the hottest reefs on the planet?
11. Collaring tapirs to help them survive
Post Your Comments:
(Date:11/18/2015)... Nov. 18, 2015  As new scientific discoveries deepen ... and other healthcare providers face challenges in better using ... patients. In addition, as more children continue to survive ... adulthood and old age. John M. Maris, ... Hospital of Philadelphia (CHOP) . --> ...
(Date:11/17/2015)... , Nov. 17, 2015 Pressure BioSciences, Inc. ... the development and sale of broadly enabling, pressure cycling ... sciences industry, today announced it has received gross proceeds ... million Private Placement (the "Offering"), increasing the total amount ... or more additional closings are expected in the near ...
(Date:11/11/2015)... MedNet Solutions , an innovative SaaS-based eClinical technology company that ... announce that it will be a Sponsor of the ... held November 17-19 in Hamburg , Germany.  ... iMedNet , MedNet,s easy-to-use, proven and affordable eClinical ... able to deliver time and cost savings of up to ...
Breaking Biology News(10 mins):
(Date:11/25/2015)... , Nov. 25, 2015 /PRNewswire/ - Aeterna Zentaris ... that its business and prospects remain fundamentally strong ... Zoptrex™ (zoptarelin doxorubicin) recently received DSMB recommendation to ... completion following review of the final interim efficacy ... 2 Primary Endpoint in men with heavily pretreated ...
(Date:11/25/2015)... CA (PRWEB) , ... November 25, 2015 , ... ... genomics company uBiome, were featured on AngelList early in their initial angel funding ... an AngelList syndicate for individuals looking to make early stage investments in the ...
(Date:11/24/2015)... 2015 Halozyme Therapeutics, Inc. (NASDAQ: HALO ) will ... New York on Wednesday, December 2 at 9:30 a.m. ... and CEO, will provide a corporate overview. th ... at 1:00 p.m. ET/10:00 a.m. PT . Jim Mazzola ... a corporate overview. --> th Annual Oppenheimer Healthcare ...
(Date:11/24/2015)... , Nov. 24, 2015 /PRNewswire/ - Aeterna Zentaris ... of IIROC on behalf of the Toronto Stock Exchange, ... release there are no corporate developments that would cause ... --> --> About Aeterna ... . --> Aeterna Zentaris is a ...
Breaking Biology Technology: