Navigation Links
Bald reef gets new growth with seaweed transplant
Date:1/14/2014

SYDNEY: Marine ecologists in Sydney have successfully restored a once thriving seaweed species, which vanished along a stretch of the city's coastline during the 1970s and 80s during high levels of sewage outfalls.

A team of researchers from UNSW, the Sydney Institute of Marine Science and the NSW Department of Primary Industries has transplanted fertile specimens of the missing crayweed (Phyllospora comosa) onto two barren reef sites where it once grew abundantly.

They took seaweed from Palm Beach and Cronulla and transplanted it to Long Bay and Cape Banks. Their results are reported in the journal PLOS ONE.

"Seaweeds are the 'trees' of the oceans, providing habitat structure, food and shelter for other marine organisms, such as crayfish and abalone," says lead author, Dr Alexandra Campbell, from the UNSW Centre for Marine Bio-Innovation.

"The transplanted crayweed not only survived similarly to those in natural populations, but they also successfully reproduced. This creates the potential for a self-sustaining population at a place where this species has been missing for decades," she says.

Large brown seaweeds known as macroalgae along temperate coastlines, like those in NSW, also encourage biodiversity and are important to the region's fishing and tourism industries.

However, these seaweed ecosystems face increasing threats of degradation due to human impacts and ocean warming. The authors say the potential environmental and economic implications of losing these habitats would be comparable to the more highly publicised loss of Australia's tropical coral reefs.

In 2008, researchers from UNSW and the NSW Department of Primary Industries (DPI) showed that a 70 km stretch of this important habitat-forming crayweed had vanished from the Sydney coast decades earlier, coinciding with a period known for high levels of sewage.

Despite improved water quality around Sydney after the introduction of better infrastructure in the 1990s, which pumped sewage into the deeper ocean, the 70 km gap of depleted 'underwater forest' between Palm Beach and Cronulla - has never been able to recover naturally.

Now, with some well-executed intervention, it looks as though this habitat-forming crayweed could make a successful comeback in Sydney's coastal waters.

"This is an environmental good news story," says research supervisor UNSW Professor Peter Steinberg, Director of the Sydney Institute of Marine Science.

"This kind of restoration study has rarely been done in these seaweed-dominated habitats, but our results suggest that we may be able to assist in the recovery of underwater forests on Sydney's reefs, potentially enhancing biodiversity and recreational fishing opportunities along our coastline."

The researchers say their results could provide valuable insights for restoring similar macroalgae marine ecosystems in Australia and globally, but further research is needed to understand the complex processes that affect recruitment and survival.


'/>"/>

Contact: Deborah Smith
deborah.smith@unsw.edu.au
61-293-857-307
University of New South Wales
Source:Eurekalert  

Related biology news :

1. Embryonic development protein active in cancer growth
2. The effect of catch-up growth by various diets and resveratrol intervention on bone status
3. Salk scientists open new window into how cancers override cellular growth controls
4. New Biotech and Pharmaceutical Market Research from Global Information Inc Forecasts Strong Growth Coming Out of Recession
5. Global Surgical Devices Market Growth Driven by Improving Standards of Living and Longer Life Expectancies, Research Shows
6. Research shows how PCBs promote dendrite growth, may increase autism risk
7. Fruit flies provide new knowledge about uninhibited cell growth
8. Polluting China for the sake of economic growth
9. Researchers find reducing fishmeal hinders growth of farmed fish
10. Updates in Interventional Radiology accents emerging trends, practice growth
11. Plant growth without light control
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Bald reef gets new growth with seaweed transplant
(Date:4/11/2017)... Research and Markets has announced the addition ... their offering. ... tracking market to grow at a CAGR of 30.37% during the ... 2017-2021, has been prepared based on an in-depth market analysis with ... its growth prospects over the coming years. The report also includes ...
(Date:4/5/2017)... April 5, 2017 Today HYPR Corp. ... the server component of the HYPR platform is officially ... the end-to-end security architecture that empowers biometric authentication across ... has already secured over 15 million users across the ... of connected home product suites and physical access represent ...
(Date:3/30/2017)... 30, 2017 The research team of The ... (3D) fingerprint identification by adopting ground breaking 3D fingerprint minutiae recovery ... of speed and accuracy for use in identification, crime investigation, immigration ... ... A research team ...
Breaking Biology News(10 mins):
(Date:9/19/2017)... (PRWEB) , ... September 19, 2017 , ... ... a standard fume hood and a high-performance fume hood. Along with the advantages ... and applications for ductless vs. ducted hoods in the laboratory. , Attendees will ...
(Date:9/19/2017)... ... 19, 2017 , ... VetStem Biopharma ’s CEO and founder, Dr. Bob Harman DVM, MPVM, ... book "Stem Cell Therapy: A Rising Tide". Dr. Harman and Dr. Riordan met in ... an interest in the potential of stem cell therapy and a fast friendship was formed. ...
(Date:9/19/2017)... Pleasanton, Calif. and Washington, D.C. (PRWEB) , ... ... ... to delivering rapid care during an biological outbreak is about to be eliminated, ... When asked what makes ExcitePCR’s FireflyDX™ technologies different than other pathogen ...
(Date:9/19/2017)... ... September 19, 2017 , ... Avomeen Analytical ... recipients of its 2017 Science Student Award. The scholarship program is dedicated to ... community service defray the costs of obtaining their science education. , Avomeen began ...
Breaking Biology Technology: