Navigation Links
BUSM researchers identify novel approach to study COPD and treatment efficacy
Date:4/11/2013

(Boston) Researchers from Boston University School of Medicine (BUSM) have pinpointed a genetic signature for chronic obstructive pulmonary disease (COPD) from airway cells harvested utilizing a minimally invasive procedure. The findings provide a novel way to study COPD and could lead to new treatments and ways to monitor patient's response to those treatments. The study is published online in the American Journal of Respiratory and Critical Care Medicine.

Chronic obstructive pulmonary disease (COPD) is a progressive lung disease that leads to the loss of lung function primarily caused by cigarette smoking. It causes coughing, wheezing, shortness of breath, chest tightness and other symptoms that make it difficult to breathe. While there are treatments and lifestyle changes that can help people cope with COPD, there currently is no cure and there are no effective therapies to reduce the rate of lung function decline. According to the National Institutes of Health's National Heart, Lung, and Blood Institute (NHLBI), which partially funded the study, COPD is the third leading cause of death in the United States, resulting in approximately 135,000 deaths each year.

"There have been limited molecular studies of COPD given the inaccessibility and invasiveness of obtaining lung tissue," said Katrina Steiling, MD, MSc, assistant professor of medicine at BUSM who served as the study's first author. The researchers hypothesized that while COPD primarily affects the tissue deep within the lung, the effects of COPD might be detectable in relatively accessible tissue throughout the respiratory tract. This echoes previous work they had done that found that cancer found deep in the lung could be detected by cancer-specific patterns of gene expression in the largest airways connected to the windpipe, far from the tumor.

To examine their hypothesis, the research team used airway cells obtained during a bronchoscopy, a procedure that involves putting a small camera into the airway through the nose or mouth. During the procedure, which can be done while a patient is awake under local anesthesia or moderate sedation, a cytology brush is used to gently scrape the sides of airways to collect cells.

They examined 238 samples from current and former smokers that had been collected by Stephen Lam, MD, a collaborator from the University of British Columbia. Eighty seven of the samples were from patients who had been diagnosed with mild to moderate COPD based on their lung function. The other 151 samples represented patients who did not have COPD based on these criteria.

When the researchers compared the airway samples from both groups, they found that 98 genes were expressed at different levels in those diagnosed with COPD compared to those without COPD. In order to determine how similar the airway cell changes were to lung tissue cells, the researchers compared their results with previously published findings on the gene expression changes associated with COPD in lung tissue. The results of the comparison demonstrate that the changes that occur in the airway cell samples in those diagnosed with COPD were similar to the changes in lung tissue cells of individuals with the disease despite the airway cells coming from regions of the lung not thought to be altered by disease.

"Our data shows that there are consistent gene-expression changes that occur in both airway and lung tissue cells in individuals with COPD," said Avrum Spira, MD, MSc, Alexander Graham Bell professor of medicine and chief of the division of computational biomedicine at BUSM who served as one of the senior co-authors of the study.

To investigate the effects of treatment on the COPD-associated gene expression changes, the researchers collaborated with a team led by Maarten van den Berge, MD, PhD, from the University of Groningen Medical Center in the Netherlands that had collected airway cells from COPD patients before and after they started steroid therapy. They found that the expression of some genes that changed due to COPD reversed their expression after treatment and started to look more like the levels seen in current or former smokers without COPD.

"Part of the COPD 'signature' reverses with therapy, suggesting that examining airway cells might be a minimally invasive tool for monitoring the disease and evaluating the response to therapy more quickly in order to determine the best course of treatment for each individual patient," said Marc Lenburg, PhD, associate professor in computational biomedicine and bioinformatics at BUSM and the study's other senior co-author.

"Studying COPD using the large airway opens up some really exciting new avenues of research that could also improve care for patients with COPD," said Spira. "While we are still at an early stage, I envision being able to examine airway cells from my patients with COPD to determine what is causing the disease and, from that information, recommend a more specific and effective treatment."


'/>"/>

Contact: Jenny Eriksen
jenny.eriksen@bmc.org
617-638-6841
Boston University Medical Center
Source:Eurekalert

Related biology news :

1. Researchers call for marine observation network
2. Biofilms help Salmonella survive hostile conditions, Virginia Tech researchers say
3. U-M researchers find new way to clear cholesterol from the blood
4. Dartmouth researchers find there is no single sexy chin
5. Researchers design drug to restore cell suicide in HPV-related head and neck cancer
6. Researchers shine light on how stress circuits learn
7. Cleveland Clinic researchers discover new link between heart disease and red meat
8. SFU researchers help unlock pine beetles Pandoras box
9. Empa researchers join Quantis to open new branch in Switzerland
10. MDC and FMP researchers identify edema inhibitor
11. Barrow researchers identify
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/14/2017)... , June 15, 2017  IBM (NYSE: IBM ) ... international tech event dedicated to developing collaboration between startups and ... on June 15-17. During the event, nine startups will showcase ... value in various industries. France ... the international market, with a 30 percent increase in the ...
(Date:5/16/2017)... TEANECK, N.J. , May 16, 2017  Veratad ... leading provider of online age and identity verification solutions, ... the K(NO)W Identity Conference 2017, May 15 thru May ... Ronald Regan Building and International Trade Center. ... across the globe and in today,s quickly evolving digital ...
(Date:5/6/2017)... RAM Group , Singaporean based ... in biometric authentication based on a novel  ... to perform biometric authentication. These new sensors are based on ... Ram Group and its partners. This sensor will have ... and security. Ram Group is a next generation ...
Breaking Biology News(10 mins):
(Date:9/18/2017)... ... September 18, 2017 , ... ... process optimization firm for the life sciences and healthcare industries, announces Bryan ... conference. , What: Digital Transformation in Medical Device – The Journey to FDA ...
(Date:9/14/2017)... ... September 14, 2017 , ... ... pharma and biotech at the third annual DrugDev Summit, November 7-8, 2017 in ... the world’s most progressive clinical research leaders for best practice case studies, keynote ...
(Date:9/14/2017)... ... ... One of the world’s largest World Marrow Donor Day events will take ... the GenCure Marrow Donor Program will be signing up potential donors for the national ... , The registration tables will be staffed by employees from all the subsidiaries of ...
(Date:9/13/2017)... ... September 13, 2017 , ... PRC ... on Thursday, September 21st from 6 to 8:30pm EDT at Catalyst in Cambridge, ... Strategies for Clinical Operations Professionals.” From tracking enrollment progress to communicating with underperforming ...
Breaking Biology Technology: