Navigation Links
A snapshot of pupfish evolution in action
Date:1/10/2013

Chris Martin has bred more than 3,000 hybrid fish in his time as a graduate student in evolution and ecology at UC Davis, a pursuit that has helped him create one of the most comprehensive snapshots of natural selection in the wild and demonstrated a key prediction in evolutionary biology.

"We can see a surprisingly complex snapshot of natural selection driving the evolution of new specialized species," said Martin, who with Professor Peter Wainwright published a paper on the topic in the Jan. 11, 2013, issue of the journal Science.

The "adaptive landscape" is very important for evolutionary biology, but rarely measured, Martin said. He's been fascinated with the concept since high school.

An adaptive landscape takes variable traits in an animal or plant, such as jaw size and shape, spreads them over a surface, and reveals peaks of success (what evolutionary scientists call fitness) where those traits become most effective, or adaptive.

It is a common and powerful idea that influences thinking about evolution. But while the concept is straightforward, it is much harder to map out such a landscape in the wild.

For example, about 50 species of pupfish are found across the Americas. The tiny fish, about an inch or so long, mostly eat algae on rocks and other detritus. Martin has been studying species found only in a few lakes on the island of San Salvador in the Bahamas, where some of the fish have evolved different-shaped jaws that allow them to feed on hard-shelled prey like snails or, in one case, to snatch scales off other fish.

In a paper published in 2011, Martin showed that these San Salvadoran fish are evolving at an explosively faster rate than other pupfish.

Martin brought some of the fish back to the lab at UC Davis and bred hybrids with fish with different types of jaws. He created about 3,000 hybrids in all, which were measured, photographed and tagged. Martin then took about 2,000 of the fish back to San Salvador.

"It was the craziest thing I've done," Martin said. "I was leaning on the stack of them in the middle of Miami airport."

Martin released the young fish into enclosures in the lakes of their grandparents. Three months later, he returned to check on the survivors and plotted them out on the adaptive landscape.

Most of the surviving fish were on an isolated peak adapted to a general style of feeding, with another peak representing fish adapted for eating hard-shelled prey. Competition between the fish had eliminated the fish whose jaws put them in the valleys between those peaks. The scale-eating fish did not survive.

The results explain why most pupfish species in America have pretty much the same diets, Martin said. The generalists are essentially stranded on their peak -- variants that get too far out fall into the valley and die out before they can make it to another peak.

"It's stabilizing selection," he said. An early burst of variation when fish entered a new environment with little competition could have allowed the shell-eaters and scale-eaters to evolve on San Salvador.


'/>"/>

Contact: Andy Fell
ahfell@ucdavis.edu
530-752-4533
University of California - Davis
Source:Eurekalert  

Related biology news :

1. Leading evolutionary scientist to discuss how genome of bacteria has evolved
2. An evolutionary surprise
3. Ancient Egyptian cotton unveils secrets of domesticated crop evolution
4. Did climate change shape human evolution?
5. A University of Tennessee professors hypothesis may be game changer for evolutionary theory
6. Analysis of stickleback genome sequence catches evolution in action
7. Study shows unified process of evolution in bacteria and sexual eukaryotes
8. Rapid method of assembling new gene-editing tool could revolutionize genetic research
9. Whats in a surname? New study explores what the evolution of names reveals about China
10. Scientists trace evolutionary history of what mammals eat
11. Not by DNA alone: How the epigenetics revolution is fostering new medicines
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
A snapshot of pupfish evolution in action
(Date:6/23/2017)... N.Y. and ITHACA, N.Y. ... ) and Cornell University, a leader in dairy research, ... with bioinformatics designed to help reduce the chances that ... With the onset of this dairy project, Cornell University ... Consortium for Sequencing the Food Supply Chain, a food ...
(Date:5/23/2017)...  Hunova, the first robotic gym for the rehabilitation and functional motor ... Genoa, Italy . The first 30 robots will be ... USA . The technology was developed and patented at the ... spin-off Movendo Technology thanks to a 10 million euro investment from entrepreneur ... ...
(Date:5/16/2017)... DALLAS , May 16, 2017   ... for health organizations, and MD EMR Systems ... certified development partner for GE, have established a ... Patient Portal product and the GE Centricity™ products, ... Centricity EMR. These new integrations ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... ... October 11, 2017 , ... ComplianceOnline’s Medical Device Summit is back for ... June 2018 in San Francisco, CA. The Summit brings together current and former FDA ... board directors and government officials from around the world to address key issues in ...
(Date:10/11/2017)... a leading provider of patient support solutions, has announced the ... which will launch this week. The VMS CNEs will address ... enhance the patient care experience by delivering peer-to-peer education programs ... to help women who have been diagnosed and are being ... ...
(Date:10/11/2017)... ... ... Disappearing forests and increased emissions are the main causes of the evolving ... those living in larger cities are affected by air pollution related diseases. , That ... countries globally - decided to take action. , “I knew I had to take ...
(Date:10/11/2017)... ... October 11, 2017 , ... Singh ... orphan drug designation to SBT-100, its novel anti-STAT3 (Signal Transducer and Activator of ... SBT-100 is able to cross the cell membrane and bind intracellular STAT3 and ...
Breaking Biology Technology: