Navigation Links
A more potent greenhouse gas than CO2, methane emissions will leap as Earth warms
Date:3/27/2014

While carbon dioxide is typically painted as the bad boy of greenhouse gases, methane is roughly 30 times more potent as a heat-trapping gas. New research in the journal Nature indicates that for each degree that the Earth's temperature rises, the amount of methane entering the atmosphere from microorganisms dwelling in lake sediment and freshwater wetlands the primary sources of the gas will increase several times. As temperatures rise, the relative increase of methane emissions will outpace that of carbon dioxide from these sources, the researchers report.

The findings condense the complex and varied process by which methane currently the third most prevalent greenhouse gas after carbon dioxide and water vapor enters the atmosphere into a measurement scientists can use, explained co-author Cristian Gudasz, a visiting postdoctoral research associate in Princeton's Department of Ecology and Evolutionary Biology. In freshwater systems, methane is produced as microorganisms digest organic matter, a process known as "methanogenesis." This process hinges on a slew of temperature, chemical, physical and ecological factors that can bedevil scientists working to model how the Earth's systems will contribute, and respond, to a hotter future.

The researchers' findings suggest that methane emissions from freshwater systems will likely rise with the global temperature, Gudasz said. But to not know the extent of methane contribution from such a widely dispersed ecosystem that includes lakes, swamps, marshes and rice paddies leaves a glaring hole in climate projections.

"The freshwater systems we talk about in our paper are an important component to the climate system," Gudasz said. "There is more and more evidence that they have a contribution to the methane emissions. Methane produced from natural or manmade freshwater systems will increase with temperature."

To provide a simple and accurate way for climate modelers to account for methanogenesis, Gudasz and his co-authors analyzed nearly 1,600 measurements of temperature and methane emissions from 127 freshwater ecosystems across the globe.

The researchers found that a common effect emerged from those studies: freshwater methane generation very much thrives on high temperatures. Methane emissions at 0 degrees Celsius would rise 57 times higher when the temperature reached 30 degrees Celsius, the researchers report. For those inclined to model it, the researchers' results translated to a temperature dependence of 0.96 electron volts (eV), an indication of the temperature-sensitivity of the methane-emitting ecosystems.

"We all want to make predictions about greenhouse gas emissions and their impact on global warming," Gudasz said. "Looking across these scales and constraining them as we have in this paper will allow us to make better predictions."


'/>"/>
Contact: Morgan Kelly
mgnkelly@princeton.edu
609-258-5729
Princeton University
Source:Eurekalert  

Related biology news :

1. Beer marinade could reduce levels of potentially harmful substances in grilled meats
2. New international partnership aims to unlock wheats potential
3. Micro systems with big commercial potential featured in SPIE journal
4. New method yields potent, renewable human stem cells with promising therapeutic properties
5. New drug raises potential for cancer treatment revolution
6. Small peptides as potential antibiotics
7. Potential lung cancer vaccine shows renewed promise
8. Study suggests potential association between soy formula and seizures in children with autism
9. Researchers find potential target for drug to treat allergic asthma
10. UTMB collaborates on program targeting potential bioterrorist pathogens Ebola and Marburg
11. 3D microgels on-demand offer new potential for cell research
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
A more potent greenhouse gas than CO2, methane emissions will leap as Earth warms
(Date:3/28/2017)... -- The report "Video Surveillance Market by ... Devices), Software (Video Analytics, VMS), and Service (VSaaS, Installation ... 2022", published by MarketsandMarkets, the market was valued at ... reach USD 75.64 Billion by 2022, at a CAGR ... considered for the study is 2016 and the forecast ...
(Date:3/24/2017)... -- Research and Markets has announced the addition of ... - Industry Forecast to 2025" report to their offering. ... The Global Biometric Vehicle ... around 15.1% over the next decade to reach approximately $1,580 million ... estimates and forecasts for all the given segments on global as ...
(Date:3/22/2017)... VILNIUS, Lithuania , March 21, 2017 /PRNewswire/ ... identification and object recognition technologies, today announced the ... development kit (SDK), which provides improved facial recognition ... safety cameras on a single computer. The new ... algorithms to improve accuracy, and it utilizes a ...
Breaking Biology News(10 mins):
(Date:6/22/2017)... ... June 21, 2017 , ... RMC ... Carolina, and engages Timothy Reinhardt to manage the new site. , Tim has ... Inc, with his most recent role as the Director of Manufacturing and Supplier ...
(Date:6/22/2017)... ... June 22, 2017 , ... ... clients throughout the biopharma and life sciences industries, continue to be in demand ... Tunnell’s Kip Wolf will be speaking on “The State of Information Governance in ...
(Date:6/20/2017)... ... June 20, 2017 , ... Biologist Dawn Maslar MS has found a ... book, Men Chase, Women Choose: The Neuroscience of Meeting, Dating, Losing Your Mind, and ... on men. ”The logical next step, in my estimation, was to scientifically track the ...
(Date:6/20/2017)... (PRWEB) , ... June 20, 2017 , ... ... for discovery of antibody therapeutics from millions-diverse immune repertoires, announces launch of its ... San Diego, California. Dave Johnson, PhD, CEO of GigaGen, will present on Surge ...
Breaking Biology Technology: