Navigation Links
Adenosine triphosphate


For other uses of the initials ATP, see ATP (disambiguation)


Adenosine triphosphate (ATP) is the nucleotide known in biochemistry as the "molecular currency" of intracellular energy transfer; that is, ATP is able to store and transport chemical energy within cells. ATP also plays an important role in the synthesis of nucleic acids. ATP molecules are also used to store the energy plants make in cellular respiration.

Contents

Chemical properties

Chemically, ATP consists of adenosine and three phosphate groups. It has the empirical formula C10H16N5O13P3, and the chemical formula C10H8N4O2NH2(OH)2(PO3H)3H, with a molecular mass of 507.184 u. The phosphoryl groups starting with that on AMP are referred to as the alpha, beta, and gamma phosphates. The biochemical name for ATP is 9--D-ribofuranosyladenine-5'-triphosphate.

Synthesis

ATP can be produced by various cellular processes, most typically in mitochondria by oxidative phosphorylation under the catalytic influence of ATP synthase or in the case of plants in chloroplasts by photosynthesis. The main fuels for ATP synthesis are glucose and fatty acids. Initially glucose is broken down into pyruvate in the cytosol. Two molecules of ATP are generated for each molecule of glucose. The terminal stages of ATP synthesis are carried out in the mitochondrion and can generate up to 36 ATP.

ATP in the human body

The total quantity of ATP in the human body is about 0.1 mole. The energy used by human cells requires the hydrolysis of 200 to 300 moles of ATP daily. This means that each ATP molecule is recycled 2000 to 3000 times during a single day. ATP cannot be stored, hence its synthesis must closely follow its consumption.

Other triphosphates

Living cells also have other "high-energy" nucleoside triphosphates, such as guanosine triphosphate. Between them and ATP, energy can be easily transferred with reactions such as those catalyzed by nucleoside diphosphokinase : Energy is released when hydrolysis of the phosphate-phosphate bonds is carried out. This energy can be used by a variety of enzymes, motor proteins , and transport proteins to carry out the work of the cell. Also, the hydrolysis yields free inorganic phosphate and adenosine diphosphate, which can be broken down further to another phosphate ion and adenosine monophosphate. ATP can also be broken down to adenosine monophosphate directly, with the formation of pyrophosphate. This last reaction has the advantage of being an effectively irreversible process in aqueous solution.

Reaction of ADP with GTP

ADP + GTP ATP + GDP

There is talk of using ATP as a power source for nanotechnology and implants. Artificial pacemakers could become independent of batteries.

See also

External link


'"/>


(Date:8/14/2019)... TORONTO (PRWEB) , ... August 14, 2019 , ... Join ... live session on Tuesday, September 10, 2019 at 1pm EDT to learn ... stratification and effective management. , NAFLD is the most common diffuse liver disease, ...
(Date:8/14/2019)... ... , ... Gateway Genomics , a leading developer of direct-to-consumer genetic tests ... annual Inc. 500|5000 list of fastest growing private companies, in the first year ... and generating revenue by March 31, 2015. Ranking in the list is determined by ...
(Date:8/14/2019)... ... August 13, 2019 , ... Dr. Julie Reck of Veterinary Medical Center of ... patients. Her first stem cell patient, her own geriatric Australian Shepherd, Simon, was treated ... Reck, Simon wanted to play but his body was weak, and he struggled to play ...
Breaking Biology News(10 mins):
Other biology definition